Scientific computing requires the highest computing requirements. Over the years, the scientific community has used dynamic languages, which are comparatively much slower, to build their applications. A major reason for this is that applications are generally developed by physicists, biologists, financial experts, and other domain experts who, despite having experience with programming, are not seasoned developers. These experts always prefer dynamic languages over statically typed languages, which could have given them better performance, simply because they ease development and readability. However, there are now special packages to improve the performance of the code, such as Numba for Python. As the compiler techniques and language design has advanced, it is now possible to eliminate the trade-off between performance and dynamic prototyping. The requirement was to build a language, that is easy to read and code in, like Python, which is a dynamic language and gives the performance of C, which is a statically typed language. In 2012, a new language emerged—Julia. It is a general purpose programming language highly suited for scientific and technical computing. Julia's performance is comparable to C/C++ measured on the different benchmarks available on the JuliaLang's homepage and simultaneously provides an environment that can be used effectively for prototyping, like Python. Julia is able to achieve such performance because of its design and Low Level Virtual Machine (LLVM)-based just-in-time (JIT) compiler. These enable it to approach the performance of C and Fortran. We will be reading more about LLVM and JIT at the end of the chapter. The following quote is from the development team of Julia—the gist of why Julia was created (source: https://julialang.org/blog/2012/02/why-we-created-julia):
Julia is highly influenced by Python because of its readability and rapid prototyping capabilities, by R because of the support it gives to mathematical and statistical operations, by MATLAB (also GNU Octave) because of the vectorized numerical functions, especially matrices, and by some other languages too. Some of these languages have been in existence for more than 20 years now. Julia borrows ideologies from many of these languages and tries to bring the best of all these worlds together, and quietly succeeds too!