Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Learning Elastic Stack 6.0
Learning Elastic Stack 6.0

Learning Elastic Stack 6.0: A beginner's guide to distributed search, analytics, and visualization using Elasticsearch, Logstash and Kibana

Arrow left icon
Profile Icon Pranav Shukla Profile Icon Sharath Kumar
Arrow right icon
€15.99 €23.99
Full star icon Full star icon Full star icon Full star icon Half star icon 4.5 (10 Ratings)
eBook Dec 2017 434 pages 1st Edition
eBook
€15.99 €23.99
Paperback
€29.99
Subscription
Free Trial
Renews at €18.99p/m
Arrow left icon
Profile Icon Pranav Shukla Profile Icon Sharath Kumar
Arrow right icon
€15.99 €23.99
Full star icon Full star icon Full star icon Full star icon Half star icon 4.5 (10 Ratings)
eBook Dec 2017 434 pages 1st Edition
eBook
€15.99 €23.99
Paperback
€29.99
Subscription
Free Trial
Renews at €18.99p/m
eBook
€15.99 €23.99
Paperback
€29.99
Subscription
Free Trial
Renews at €18.99p/m

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Table of content icon View table of contents Preview book icon Preview Book

Learning Elastic Stack 6.0

Introducing Elastic Stack

We are living in an advanced stage of the information age. The emergence of the web, mobiles, social networks, blogs, and photo sharing has created a massive amount of data in recent years. These new data sources create information that cannot be handled using traditional data storage technology, typically relational databases. As an application developer or business intelligence developer, your job is to fulfill the search and analytics needs of the application.

A number of big data scale data stores have emerged in the last few years. This includes Hadoop ecosystem projects, several NoSQL databases, and search and analytics engines such as Elasticsearch. Hadoop and each NoSQL database have their own strengths and use cases. 

Elastic Stack is a rich ecosystem of components serving as a full search and analytics stack. The main components of Elastic Stack are Kibana, Logstash, Beats, X-Pack, and Elasticsearch. Elasticsearch is at the heart of Elastic Stack, providing storage, search, and analytics capabilities. Kibana, which is also called a window into Elastic Stack, is a great visualization and user interface for Elastic Stack. Logstash and Beats help in getting the data into Elastic Stack. X-Pack provides powerful features including monitoring, alerting, and security to make your system production ready. Since Elasticsearch is at the heart of Elastic Stack, we will cover the stack inside-out, starting from the heart and moving on to the surrounding components.

In this chapter, we will cover the following topics:

  • What is Elasticsearch, and why use it?
  • A brief history of Elasticsearch and Apache Lucene
  • Elastic Stack components 
  • Use cases of Elastic Stack

We will look at what Elasticsearch is and why you should consider it as your data store. Once you know the key strengths of Elasticsearch, we will look at the history of Elasticsearch and its underlying technology, Apache Lucene. We will then look at some use cases of Elastic Stack, and we will provide an overview of the Elastic Stack components.

What is Elasticsearch, and why use it?

Since you are reading this book, you probably already know what Elasticsearch is. For the sake of completeness, let us define Elasticsearch.

Elasticsearch is a realtime, distributed search and analytics engine that is horizontally scalable and capable of solving a wide variety of use cases. At the heart of Elastic Stack, it centrally stores your data so you can discover the expected and uncover the unexpected.

Elasticsearch is at the core of Elastic Stack, playing the central role of a search and analytics engine. Elasticsearch is built on a radically different technology, Apache Lucene. This fundamentally different technology in Elasticsearch sets it apart from traditional relational databases and other NoSQL solutions. Let us look at the key benefits of using Elasticsearch as your data store:

  • Schemaless, document-oriented
  • Searching
  • Analytics
  • Rich client library support and the REST API
  • Easy to operate and easy to scale
  • Near real time
  • Lightning fast
  • Fault tolerant

Let us look at each benefit one by one.

Schemaless and document-oriented

Elasticsearch does not impose a strict structure on your data; you can store any JSON documents. JSON documents are first class citizens in Elasticsearch as opposed to rows and columns in a relational database. A document is roughly equivalent to a record in a relational database table. Traditional relational databases require a schema to be defined beforehand to specify a fixed set of columns and their datatypes and sizes. Often the nature of data is very dynamic, requiring support for new or dynamic columns. The JSON documents naturally support this type of data. For example, take a look at the following document:

{
 "name": "John Smith",
 "address": "121 John Street, NY, 10010",
 "age": 40
}

This document may represent a customer's record. Here the record has the name, address, and age of the customer. Another record may look like the following one:

{
 "name": "John Doe",
 "age": 38,
 "email": "john.doe@company.org"
}

Note that the second customer doesn't have the address field, but instead has an email address. In fact, other customer documents may have completely different sets of fields. This provides a tremendous amount of flexibility in terms of what can be stored.

Searching

The core strength of Elasticsearch lies in its text processing capabilities. Elasticsearch is great at searching, especially a full-text search. Let us understand what a full-text search is.

Full-text search means searching through all the terms of all the documents available in the database. This requires the entire contents of all documents to be parsed and stored beforehand. When you hear full-text search, think of Google SearchYou can enter any search term and Google looks through all of the web pages on the internet to find the best matching web pages. This is quite different from simple SQL queries run against columns of type string in relational databases. Normal SQL queries with a WHERE clause and an equals (=) or LIKE clause try to do an exact or wild-card match with underlying data. SQL queries can, at best, just match the search term to a sub-string within the text column.

When you want to perform a search similar to Google search on your own data, Elasticsearch is your best bet. You can index emails, text documents, PDF files, web pages, or practically any unstructured text documents and search across all your documents with search terms.

At a high level, Elasticsearch breaks up text data into terms and makes every term searchable by building Lucene indexes. You can build your own Google-like search for your application which is very fast and flexible.

In addition to supporting text data, Elasticsearch also supports other data types such as numbers, dates, geolocations, IP addresses, and many more. We will take an in-depth look at search in Chapter 3, Searching-What is Relevant.

Analytics

Apart from search, the second most important functional strength of Elasticsearch is analytics. Yes, what was originally known just as a full-text search engine is now used as an analytics engine in a variety of use cases. Many organizations are running analytics solutions powered by Elasticsearch in production.

Search is like zooming in and finding a needle in a haystack. Search helps zoom in on precisely what is needed in huge amounts of data. Analytics is exactly the opposite of search; it is about zooming out and taking a look at the bigger picture. For example, you may want to know how many visitors on your website are from the United States as opposed to every other country, or you may want to know how many of your websites visitors use macOS, Windows, or Linux.

Elasticsearch supports a wide variety of aggregations for analytics. Elasticsearch aggregations are quite powerful and can be applied to various datatypes. We will take a look at the analytics capabilities of Elasticsearch in Chapter 4, Analytics with Elasticsearch.

Rich client library support and the REST API

Elasticsearch has very rich client library support to make it accessible by many programming languages. There are client libraries available for Java, C#, Python, JavaScript, PHP, Perl, Ruby, and many more. Apart from the official client libraries, there are community driven libraries for 20 plus programming languages. 

Additionally, it has a very rich REST (Representational State Transfer) API which works on an HTTP protocol. The REST API is very well documented and quite comprehensive, making all operations available over HTTP.

All this means that Elasticsearch is very easy to integrate in any application to fulfill your search and analytics needs.

Easy to operate and easy to scale 

Elasticsearch can run on a single node and easily scale out to hundreds of nodes. It is very easy to start a single node instance of Elasticsearch; it works out of the box without any configuration changes and scales to hundreds of nodes.

Horizontal scalability is the ability to scale a system horizontally by starting up multiple instances of the same type rather than making one instance more and more powerful. Vertical scaling is about upgrading a single instance by adding more processing power (by increasing the number of CPUs or CPU cores), memory, or storage capacity. There is a practical limit to how much a system can be scaled vertically due to cost and other factors, such as the availability of higher end hardware. 

Unlike most traditional databases which only allow vertical scaling, Elasticsearch can be scaled horizontally. It can run on tens or hundreds of commodity nodes instead of one extremely expensive server. Adding a node to an existing Elasticsearch cluster is as easy as starting up a new node in the same network, with virtually no extra configuration. The client application doesn't need to change, whether it is running against a single node or a hundred node cluster.

Near real time

Data is available for querying typically within a second after it has been indexed (saved). Not all big data storage systems are real-time capable. Elasticsearch allows you to index thousands to hundreds of thousands of documents per second and makes them available for searching almost immediately.

Lightning fast

Elasticsearch uses Apache Lucene as its underlying technology. By default, Elasticsearch indexes all the fields of your documents. This is extremely invaluable as you can query or search by any field in your records. You will never be in a situation in which you think if only I had chosen to create an index on this field. Elasticsearch contributors have leveraged Apache Lucene to its best advantage, and there are other optimizations which make it lightning fast.

Fault tolerant

Elasticsearch clusters can keep running even when there are hardware failures such as node failure and network failure. In the case of node failure, it replicates all the data that was on the failed node to another node in the cluster. In the case of network failure, Elasticsearch seamlessly elects master replicas to keep the cluster running. Whether it is node or network failure, you can rest assured that your data is safe.

Now that you know when and why Elasticsearch could be a great choice, let us take a high level view of the ecosystem—the Elastic Stack.

Exploring the components of Elastic Stack

The Elastic Stack components are shown in the following figure. It is not necessary to include all of them in your solution. Some components are general purpose and they can be used outside of Elastic Stack without using any of the other components.

Let us look at the purpose of each component and how they fit in the stack:

Elasticsearch

Elasticsearch is at the heart of Elastic Stack. It stores all your data and provides search and analytic capabilities in a scalable way. We have already looked at the strengths of Elasticsearch and why you would want to use it. Elasticsearch can be used without using any other components to power your application in terms of search and analytics. We will cover Elasticsearch in great detail in Chapter 2, Getting Started with Elasticsearch, Chapter 3, Searching-What is Relevant, and Chapter 4, Analytics with Elasticsearch.

Logstash

Logstash helps in centralizing event data such as logs, metrics, or any other data in any format. It can perform a number of transformations before sending it to a stash of your choice. It is a key component of Elastic Stack, used to centralize the collection and transformation processes in your data pipeline.

Logstash is a server side component. Its role is to centralize the collection of data from a wide number of input sources in a scalable way, and transform and send the data to an output of your choice. Typically, the output is sent to Elasticsearch, but Logstash is capable of sending it to a wide variety of outputs. Logstash has a plugin-based, extensible architecture. It supports three types of plugin: input plugins, filter plugins, and output plugins. Logstash has a collection of 200 plus supported plugins and the count is ever increasing.

Logstash is an excellent general purpose data flow engine which helps in building real-time, scalable data pipelines.

Beats

Beats is a platform of open source lightweight data shippers. Its role is complementary to Logstash. Logstash is a server-side component, whereas Beats has a role on the client side. Beats consists of a core library, libbeat, which provides an API for shipping data from the source, configuring the input options, and implementing logging. Beats is installed on machines that are not part of server-side components such as Elasticsearch, Logstash, or Kibana. These agents reside on non-cluster nodes which may also be called edge nodes sometimes.

There are many Beat components that have already been built by the Elastic team and the open source community. The Elastic team has built Beats including, Packetbeat, Filebeat, MetricbeatWinlogbeat, Audiobeat, and Heartbeat. 

Filebeat is a single-purpose Beat built to ship log files from your servers to a centralized Logstash server or Elasticsearch server. Metricbeat is a server monitoring agent that periodically collects metrics from the operating systems and services running on your servers. There are already around 40 community Beats built for specific purposes such as monitoring Elasticsearch, Cassandra, the Apache web server, JVM performance, and so on. You can build your own beat using libbeat if you don't find one that fits your needs.

We will take a deep dive into Logstash and Beats in Chapter 5, Analyzing Log Data and Chapter 6, Building Data Pipelines with Logstash.

Kibana

Kibana is the visualization tool of Elastic Stack which can help you gain powerful insights about your data in Elasticsearch. It is often called a window into Elastic Stack. It offers many visualizations including histograms, maps, line charts, time series, and more. You can build visualizations with just a few clicks and interactively explore the data. It lets you build beautiful dashboards by combining different visualizations, sharing with others, and exporting high quality reports.

Kibana also has management and development tools. You can manage settings and configure X‑Pack security features for the Elastic Stack. Kibana also has development tools which enable developers to build and test REST API requests.

We will explore Kibana in Chapter 7, Visualizing Data with Kibana.

X-Pack

X-Pack adds essential features to make Elastic Stack production ready. It adds security, monitoring, alerting, reporting, and graph capabilities to Elastic Stack.

Security

The security plugin within X-Pack adds authentication and authorization capabilities to Elasticsearch and Kibana so that only authorized people have access to the data, and they see only what they are allowed to see. The security plugin works across components seamlessly, securing access to Elasticsearch and Kibana.

The security extension also lets you configure fields and document level security with the licensed version.

Monitoring

You can monitor your Elastic Stack components so that there is no downtime. The monitoring component in X-Pack lets you monitor your Elasticsearch clusters and Kibana.

You can monitor clusters, nodes, and index level metrics. The monitoring plugin maintains a history of performance so that you can compare the current metrics with the past metrics. It also has a capacity planning feature.

Reporting

The reporting plugin within X-Pack allows for generating printable, high-quality reports from Kibana visualizations. The reports can be scheduled to run periodically or on a per event basis.

Alerting

X-Pack has sophisticated alerting capabilities that can alert you in multiple possible ways when certain conditions are met. It gives tremendous flexibility in terms of when, how, and who to alert. 

You may be interested in detecting security breaches, such as when someone has five login failures within an hour from different locations, or when your product is trending on social media. You can use the full power of Elasticsearch queries to check when complex conditions are met.

Alerting provides a wide variety of options in terms of how alerts are sent. It can send alerts via email, Slack, Hipchat, and PagerDuty.

Graph

Graph lets you explore relationships in your data. The data in Elasticsearch is generally perceived as a flat list of entities without connections to other entities. This relationship opens up the possibility of new use cases. Graph can surface relationships among entities which share common properties such as people, places, products, or preferences. 

Graph consists of Graph API and a UI within Kibana to let you explore this relationship. Under the hood, it leverages distributed querying, indexing at scale, and the relevance capabilities of Elasticsearch.

We will look at the some of X-Pack components in Chapter 8, Elastic X-Pack.

Elastic Cloud

Elastic Cloud is the cloud-based, hosted, and managed setup of Elastic Stack components. The service is provided by the company Elastic (https://www.elastic.co/). Elastic is the company behind the development of Elasticsearch and other Elastic Stack components. All Elastic Stack components are open source except X-Pack (and Elastic Cloud). The company Elastic provides services for Elastic Stack components including training, development, support, and cloud hosting.

Apart from Elastic Cloud, there are other hosted solutions available for Elasticsearch including one from Amazon Web Services (AWS). The advantage of Elastic Cloud is that it is developed and maintained by the original creators of Elasticsearch and other Elastic Stack components.

Use cases of Elastic Stack

Elastic Stack components have a variety of practical use cases, and new use cases are emerging as more plugins are added to existing components. As mentioned earlier, you may use a subset of the components for your use case. The following example use cases are by no means exhaustive, but are some of the most common ones:

  • Log and security analytics
  • Product search
  • Metrics analytics
  • Web search and website search

Let us look at each use case.

Log and security analytics

The Elasticsearch, Logstash, and Kibana trio was very popular as an ELK stack previously. The presence of Elasticsearch, Logstash, and Kibana (also known as ELK) makes Elastic Stack an excellent stack for aggregating and analyzing logs in a central place.

The application support teams face a great challenge administering and managing large numbers of applications deployed across tens or hundreds of servers. The application infrastructure could have the following components:

  • Web servers
  • Application servers
  • Database servers
  • Message brokers

Typically, enterprise applications have all or most of the types of servers which were explained earlier, and there are multiple instances of each server. In the event of an error or production issue, the support team has to log in to individual servers and look at the errors. It is quite inefficient to log in to individual servers and look at the raw log files. Elastic Stack provides a complete tool set to collect, centralize, analyze, visualize, alert, and report the errors as they occur. Here is how each component can be used to solve this problem:

  • The Beats framework, Filebeat in particular, can run as a lightweight agent to collect and forward the logs.
  • Logstash can centralize the events received from Beats, and parse and transform each log entry before sending it to the Elasticsearch cluster.
  • Elasticsearch indexes the logs. It enables both search and analytics on the parsed logs.
  • Kibana then lets you create visualizations based on errors, warnings, and other information logs. It lets you create dashboards where you can centrally monitor events as they occur, in real time.
  • With X-Pack, you can secure the solution, configure alerts, get reports, and analyze relationships in the data.

As you can see, you can get a complete log aggregation and monitoring solution using Elastic Stack.

A security analytics solution would be very similar to this; the logs and events being fed into the system would pertain to firewalls, switches, and other key network elements.

Product search

Product search involves searching for the most relevant product from thousands or tens of thousands of products and presenting the most relevant products at the top of the list before the other less relevant products. You can directly relate this problem to e-commerce websites which sell huge numbers of products sold by many vendors or resellers.

Elasticsearch's full-text and relevance search capabilities can find the best matching results. Presenting the best matches on the first page has great value as it increases the chances of the customer actually buying the product. Imagine a customer searching for the iPhone 7, and the results on the first page showing different cases, chargers, and accessories for previous iPhone versions. The text analysis capabilities backed by Lucene, and innovations added by Elasticsearch, ensure that you get iPhone 7 chargers and cases after the best match.

This problem, however, is not limited to e-commerce websites. Any application that needs to find the most relevant item from millions or billions of items can use Elasticsearch to solve this problem.

Metrics analytics

Elastic Stack has excellent analytics capabilities thanks to the rich aggregations API in Elasticsearch. This makes it a perfect tool for analyzing data with lots of metrics. Metric data consists of numeric values as opposed to unstructured text such as documents and web pages. Some examples are data generated by sensors, IoT devices, metrics generated by mobile devices, servers, virtual machines, network routers, switches, and so on. The list is endless.

Metric data is typically also of the time series nature, that is, values or measures are recorded over the period of time. The metrics that are recorded are usually related to some entity. For example, a temperature reading (which is a metric) is recorded for a particular sensor device with a certain identifier. The type, name of the building, department, floor, and so on are the dimensions associated with the metric. The dimensions may also include the location of the sensor device, that is, the longitude and latitude.

Elasticsearch and Kibana allow for the slicing and dicing of metric data along different dimensions to provide deep insight about your data. Elasticsearch is very powerful at handling time-series and geo-spatial data, which means you can plot your metrics on line charts and area charts aggregating millions of metrics. You can also do geo-spatial analysis on a map.

We will build a metrics analytics application using Elastic Stack in Chapter 9, Building a Sensor Data Analytics Application.

Web search and website search

Elasticsearch can serve as a search engine for your website and perform a Google-like search across the entire contents of your site. GitHub, Wikipedia, and many other platforms power their searches using Elasticsearch.

Elasticsearch can be leveraged to build content aggregation platforms. What is a content aggregator or a content aggregation platform? Content aggregators scrape/crawl multiple websites, index the web pages, and provide a search functionality on the underlying content. This is a powerful way to build domain specific aggregated platforms. 

Apache Nutch, an open source, large scale web crawler, was created by Doug Cutting, the original creator of Apache Lucene. Apache Nutch crawls the web, parses the HTML pages, stores them, and also builds indexes to make the content searchable. Apache Nutch supports indexing into Elasticsearch or Apache Solr for its search engine.

As it is evident, Elasticsearch and Elastic Stack have many practical use cases. Elastic Stack is a platform with a complete set of tools to build end-to-end search and analytics solutions. It is a very approachable platform for developers, architects, business intelligence analysts, and system administrators. It is possible to put together an Elastic Stack solution with almost zero coding and with only configuration. At the same time, Elasticsearch is very customizable, that is, developers and programmers can build powerful applications using its rich programming language support and the REST API.

Downloading and installing

Now that we have enough motivation and reasons to learn about Elasticsearch and Elastic Stack, let us start by downloading and installing the key components. Firstly, we will download and install Elasticsearch and Kibana. We will install the other components as we need them on the course of our journey. We also need Kibana because, apart from visualizations, it also has a UI for developer tools and for interacting with Elasticsearch.

Starting from Elastic Stack 5.x, all Elastic Stack components are now released together; they share the same version, and are tested for compatibility with each other. This is true for Elastic Stack 6.x components as well. 

At the time of this writing, the current released version of Elastic Stack is 6.0.0. We will use this version for all components.

Installing Elasticsearch

Elasticsearch can be downloaded as a ZIP, TAR, DEB, or RPM package. If you are on Ubuntu, Red Hat, or CentOS Linux, it can be directly installed using apt or yum.

We will use the ZIP format as it is the least intrusive and the easiest for development purposes.

  1. Go to https://www.elastic.co/downloads/elasticsearch and download the ZIP distribution. You can also download an older version if you are looking for an exact version. 
  2. Extract the file and change your directory to the top level extracted folder. Run bin/elasticsearch or bin/elasticsearch.bat.
  3. Run curl http://localhost:9200 or open the URL in your favorite browser.

You should see an output like this:

Congratulations! You have just set up a single node Elasticsearch cluster.

Installing Kibana

Kibana is also available in a variety of packaging formats such as ZIP, TAR.GZ, RMP, and DEB for 32-bit and 64-bit architecture machines: 

  1. Go to https://www.elastic.co/downloads/kibana and download the ZIP or TAR.GZ distribution for the platform that you are on. 
  2. Extract the file and change your directory to the top level extracted folder. Run bin/kibana or bin/kibana.bat.
  3. Open the URL http://localhost:5601 in your favorite browser.

Congratulations! You have a working setup of Elasticsearch and Kibana.

Summary

In this chapter, we started off by understanding the motivations of alternate search and analytics technologies other than relational databases and NoSQL stores. We looked at the strengths of Elasticsearch, which is at the heart of Elastic Stack. We then looked at the rest of the components of Elastic Stack and how they fit into the ecosystem. We also looked at real-world use cases of Elastic Stack. We have successfully downloaded and installed Elasticsearch and Kibana to begin the journey of learning about Elastic Stack.

In the next chapter, we will understand the core concepts of Elasticsearch. We will learn about indexes, types, shards, data types, mappings, and other fundamentals. We will also interact with Elasticsearch by using CRUD (Create, Read, Update, and Delete) operations, and learn the basics of search.

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • - Get to grips with the new features introduced in Elastic Stack 6.0
  • - Get valuable insights from your data by working with the different components of the Elastic stack such as Elasticsearch, Logstash, Kibana, X-Pack, and Beats
  • - Includes handy tips and techniques to build, deploy and manage your Elastic applications efficiently on-premise or on the cloud

Description

The Elastic Stack is a powerful combination of tools for distributed search, analytics, logging, and visualization of data from medium to massive data sets. The newly released Elastic Stack 6.0 brings new features and capabilities that empower users to find unique, actionable insights through these techniques. This book will give you a fundamental understanding of what the stack is all about, and how to use it efficiently to build powerful real-time data processing applications. After a quick overview of the newly introduced features in Elastic Stack 6.0, you’ll learn how to set up the stack by installing the tools, and see their basic configurations. Then it shows you how to use Elasticsearch for distributed searching and analytics, along with Logstash for logging, and Kibana for data visualization. It also demonstrates the creation of custom plugins using Kibana and Beats. You’ll find out about Elastic X-Pack, a useful extension for effective security and monitoring. We also provide useful tips on how to use the Elastic Cloud and deploy the Elastic Stack in production environments. On completing this book, you’ll have a solid foundational knowledge of the basic Elastic Stack functionalities. You’ll also have a good understanding of the role of each component in the stack to solve different data processing problems.

Who is this book for?

This book is for data professionals who want to get amazing insights and business metrics from their data sources. If you want to get a fundamental understanding of the Elastic Stack for distributed, real-time processing of data, this book will help you. A fundamental knowledge of JSON would be useful, but is not mandatory. No previous experience with the Elastic Stack is required.

What you will learn

  • - Familiarize yourself with the different components of the Elastic Stack
  • - Get to know the new functionalities introduced in Elastic Stack 6.0
  • - Effectively build your data pipeline to get data from terabytes or petabytes of data into Elasticsearch and Logstash for searching and logging
  • - Use Kibana to visualize data and tell data stories in real-time
  • - Secure, monitor, and use the alerting and reporting capabilities of Elastic Stack
  • - Take your Elastic application to an on-premise or cloud-based production environment

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Dec 22, 2017
Length: 434 pages
Edition : 1st
Language : English
ISBN-13 : 9781787285866
Vendor :
Elastic
Category :
Tools :

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want

Product Details

Publication date : Dec 22, 2017
Length: 434 pages
Edition : 1st
Language : English
ISBN-13 : 9781787285866
Vendor :
Elastic
Category :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
€18.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
€189.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts
€264.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total 108.97
Mastering Kibana 6.x
€32.99
Learning Elastic Stack 6.0
€29.99
Mastering Elastic Stack
€45.99
Total 108.97 Stars icon

Table of Contents

11 Chapters
Introducing Elastic Stack Chevron down icon Chevron up icon
Getting Started with Elasticsearch Chevron down icon Chevron up icon
Searching-What is Relevant Chevron down icon Chevron up icon
Analytics with Elasticsearch Chevron down icon Chevron up icon
Analyzing Log Data Chevron down icon Chevron up icon
Building Data Pipelines with Logstash Chevron down icon Chevron up icon
Visualizing data with Kibana Chevron down icon Chevron up icon
Elastic X-Pack Chevron down icon Chevron up icon
Running Elastic Stack in Production Chevron down icon Chevron up icon
Building a Sensor Data Analytics Application Chevron down icon Chevron up icon
Monitoring Server Infrastructure Chevron down icon Chevron up icon

Customer reviews

Top Reviews
Rating distribution
Full star icon Full star icon Full star icon Full star icon Half star icon 4.5
(10 Ratings)
5 star 80%
4 star 10%
3 star 0%
2 star 0%
1 star 10%
Filter icon Filter
Top Reviews

Filter reviews by




Joe 21 Apr 21, 2018
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Great intro to the Elastic Stack.
Amazon Verified review Amazon
Ra Feb 24, 2018
Full star icon Full star icon Full star icon Full star icon Full star icon 5
El libro está muy bien, y puedes aprender a implantar y usar ELK desde 0, además el lenguaje es sencillo y está muy actualizado
Amazon Verified review Amazon
Paolo Eusebi Feb 08, 2019
Full star icon Full star icon Full star icon Full star icon Full star icon 5
I really liked the way the authors guide through the required steps for working with Elasticsearch stack!
Amazon Verified review Amazon
Amazon Customer Jan 22, 2018
Full star icon Full star icon Full star icon Full star icon Full star icon 5
As Elasticsearch has become number one search engine and with the rapid adoption of elastic stack for various analytics use cases I was looking for a book which is simple yet covers the required details and help me learn and implement things fast. Thankfully I stumbled upon this book which met my needs and also this book covers the latest version which is very helpful.
Amazon Verified review Amazon
Garrett Pickering Jul 18, 2018
Full star icon Full star icon Full star icon Full star icon Full star icon 5
This book was great. Read it on a flight. 10 out of 10, would read again.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

How do I buy and download an eBook? Chevron down icon Chevron up icon

Where there is an eBook version of a title available, you can buy it from the book details for that title. Add either the standalone eBook or the eBook and print book bundle to your shopping cart. Your eBook will show in your cart as a product on its own. After completing checkout and payment in the normal way, you will receive your receipt on the screen containing a link to a personalised PDF download file. This link will remain active for 30 days. You can download backup copies of the file by logging in to your account at any time.

If you already have Adobe reader installed, then clicking on the link will download and open the PDF file directly. If you don't, then save the PDF file on your machine and download the Reader to view it.

Please Note: Packt eBooks are non-returnable and non-refundable.

Packt eBook and Licensing When you buy an eBook from Packt Publishing, completing your purchase means you accept the terms of our licence agreement. Please read the full text of the agreement. In it we have tried to balance the need for the ebook to be usable for you the reader with our needs to protect the rights of us as Publishers and of our authors. In summary, the agreement says:

  • You may make copies of your eBook for your own use onto any machine
  • You may not pass copies of the eBook on to anyone else
How can I make a purchase on your website? Chevron down icon Chevron up icon

If you want to purchase a video course, eBook or Bundle (Print+eBook) please follow below steps:

  1. Register on our website using your email address and the password.
  2. Search for the title by name or ISBN using the search option.
  3. Select the title you want to purchase.
  4. Choose the format you wish to purchase the title in; if you order the Print Book, you get a free eBook copy of the same title. 
  5. Proceed with the checkout process (payment to be made using Credit Card, Debit Cart, or PayPal)
Where can I access support around an eBook? Chevron down icon Chevron up icon
  • If you experience a problem with using or installing Adobe Reader, the contact Adobe directly.
  • To view the errata for the book, see www.packtpub.com/support and view the pages for the title you have.
  • To view your account details or to download a new copy of the book go to www.packtpub.com/account
  • To contact us directly if a problem is not resolved, use www.packtpub.com/contact-us
What eBook formats do Packt support? Chevron down icon Chevron up icon

Our eBooks are currently available in a variety of formats such as PDF and ePubs. In the future, this may well change with trends and development in technology, but please note that our PDFs are not Adobe eBook Reader format, which has greater restrictions on security.

You will need to use Adobe Reader v9 or later in order to read Packt's PDF eBooks.

What are the benefits of eBooks? Chevron down icon Chevron up icon
  • You can get the information you need immediately
  • You can easily take them with you on a laptop
  • You can download them an unlimited number of times
  • You can print them out
  • They are copy-paste enabled
  • They are searchable
  • There is no password protection
  • They are lower price than print
  • They save resources and space
What is an eBook? Chevron down icon Chevron up icon

Packt eBooks are a complete electronic version of the print edition, available in PDF and ePub formats. Every piece of content down to the page numbering is the same. Because we save the costs of printing and shipping the book to you, we are able to offer eBooks at a lower cost than print editions.

When you have purchased an eBook, simply login to your account and click on the link in Your Download Area. We recommend you saving the file to your hard drive before opening it.

For optimal viewing of our eBooks, we recommend you download and install the free Adobe Reader version 9.