Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Learn Python by Building Data Science Applications

You're reading from   Learn Python by Building Data Science Applications A fun, project-based guide to learning Python 3 while building real-world apps

Arrow left icon
Product type Paperback
Published in Aug 2019
Publisher Packt
ISBN-13 9781789535365
Length 482 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Philipp Kats Philipp Kats
Author Profile Icon Philipp Kats
Philipp Kats
David Katz David Katz
Author Profile Icon David Katz
David Katz
Arrow right icon
View More author details
Toc

Table of Contents (26) Chapters Close

Preface 1. Section 1: Getting Started with Python
2. Preparing the Workspace FREE CHAPTER 3. First Steps in Coding - Variables and Data Types 4. Functions 5. Data Structures 6. Loops and Other Compound Statements 7. First Script – Geocoding with Web APIs 8. Scraping Data from the Web with Beautiful Soup 4 9. Simulation with Classes and Inheritance 10. Shell, Git, Conda, and More – at Your Command 11. Section 2: Hands-On with Data
12. Python for Data Applications 13. Data Cleaning and Manipulation 14. Data Exploration and Visualization 15. Training a Machine Learning Model 16. Improving Your Model – Pipelines and Experiments 17. Section 3: Moving to Production
18. Packaging and Testing with Poetry and PyTest 19. Data Pipelines with Luigi 20. Let's Build a Dashboard 21. Serving Models with a RESTful API 22. Serverless API Using Chalice 23. Best Practices and Python Performance 24. Assessments 25. Other Books You May Enjoy

Summary

In this final chapter, we covered multiple topics on code performance and quality and discussed a few important technologies beyond Python. In particular, we discussed how the combination of efficient code, a better understanding of requirements, and smart usage of appropriate data structures can significantly speed up the performance of codein our case, a hundred times more performant! Then, we discussed how we can deal with big data by computing in parallel on multiple CPUsor multiple machines in the cluster.

In the second part of this chapter, we discussed a few ways to keep code quality under controlby running sophisticated non-deterministic test suits, automating code formatting, and tracking code maintainability.

Both code performance and quality are important. Knowing ways to measure and improve both are necessary skills for a professional...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime