Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Learn OpenAI Whisper

You're reading from   Learn OpenAI Whisper Transform your understanding of GenAI through robust and accurate speech processing solutions

Arrow left icon
Product type Paperback
Published in May 2024
Publisher Packt
ISBN-13 9781835085929
Length 372 pages
Edition 1st Edition
Concepts
Arrow right icon
Author (1):
Arrow left icon
Josué R. Batista Josué R. Batista
Author Profile Icon Josué R. Batista
Josué R. Batista
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Part 1: Introducing OpenAI’s Whisper FREE CHAPTER
2. Chapter 1: Unveiling Whisper – Introducing OpenAI’s Whisper 3. Chapter 2: Understanding the Core Mechanisms of Whisper 4. Part 2: Underlying Architecture
5. Chapter 3: Diving into the Whisper Architecture 6. Chapter 4: Fine-Tuning Whisper for Domain and Language Specificity 7. Part 3: Real-world Applications and Use Cases
8. Chapter 5: Applying Whisper in Various Contexts 9. Chapter 6: Expanding Applications with Whisper 10. Chapter 7: Exploring Advanced Voice Capabilities 11. Chapter 8: Diarizing Speech with WhisperX and NVIDIA’s NeMo 12. Chapter 9: Harnessing Whisper for Personalized Voice Synthesis 13. Chapter 10: Shaping the Future with Whisper 14. Index 15. Other Books You May Enjoy

Augmenting Whisper with speaker diarization

Speaker diarization, partitioning an audio stream into segments according to the speaker’s identity, is a powerful feature in multispeaker speech processing. It addresses the question of who spoke when? In a given audio clip, it is crucial to enhance the functionality and usability of ASR systems. The origins of speaker diarization can be traced back to the 1990s when the foundational work for clustering-based diarization paradigms was laid down. These early studies focused on radio broadcast news and communications applications, primarily aiming to improve ASR performance. The features used in these early studies were handcrafted mainly, with Mel-frequency cepstral coefficients (MFCCs) being a common choice.

Over time, the field of speaker diarization has seen significant advancements, particularly with the emergence of deep learning technology. Modern diarization systems often leverage neural networks and large-scale GPU computing...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime