Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Java for Data Science

You're reading from   Java for Data Science Examine the techniques and Java tools supporting the growing field of data science

Arrow left icon
Product type Paperback
Published in Jan 2017
Publisher Packt
ISBN-13 9781785280115
Length 386 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Jennifer L. Reese Jennifer L. Reese
Author Profile Icon Jennifer L. Reese
Jennifer L. Reese
Richard M. Reese Richard M. Reese
Author Profile Icon Richard M. Reese
Richard M. Reese
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Getting Started with Data Science FREE CHAPTER 2. Data Acquisition 3. Data Cleaning 4. Data Visualization 5. Statistical Data Analysis Techniques 6. Machine Learning 7. Neural Networks 8. Deep Learning 9. Text Analysis 10. Visual and Audio Analysis 11. Mathematical and Parallel Techniques for Data Analysis 12. Bringing It All Together

Improving application performance using parallel techniques

In Chapter 11, Mathematical and Parallel Techniques for Data Analysis, we consider some of the parallel techniques available for data science applications. Concurrent execution of a program can significantly improve performance. In relation to data science, these techniques range from low-level mathematical calculations to higher-level API-specific options.

This chapter includes a discussion of basic performance enhancement considerations. Algorithms and application architecture matter as much as enhanced code, and this should be considered when attempting to integrate parallel techniques. If an application does not behave in the expected or desired manner, any gains from parallel optimizing are irrelevant.

Matrix operations are essential to many data applications and supporting APIs. We will include a discussion in this chapter about matrix multiplication and how it is handled using a variety of approaches. Even though these operations are often hidden within the API, it can be useful to understand how they are supported.

One approach we demonstrate utilizes the Apache Commons Math API (http://commons.apache.org/proper/commons-math/). This API supports a large number of mathematical and statistical operations, including matrix multiplication. The following example illustrates how to perform matrix multiplication.

We first declare and initialize matrices A and B:

double[][] A = { 
    {0.1950, 0.0311}, 
    {0.3588, 0.2203}, 
    {0.1716, 0.5931}, 
    {0.2105, 0.3242}}; 
 
double[][] B = { 
    {0.0502, 0.9823, 0.9472}, 
    {0.5732, 0.2694, 0.916}}; 

Apache Commons uses the RealMatrix class to store a matrix. Next, we use the Array2DRowRealMatrix constructor to create the corresponding matrices for A and B:

RealMatrix aRealMatrix = new Array2DRowRealMatrix(A); 
RealMatrix bRealMatrix = new Array2DRowRealMatrix(B); 

We perform multiplication simply using the multiply method:

RealMatrix cRealMatrix = aRealMatrix.multiply(bRealMatrix); 

Finally, we use a for loop to display the results:

for (int i = 0; i < cRealMatrix.getRowDimension(); i++) { 
    System.out.println(cRealMatrix.getRowVector(i)); 
} 

The output is as follows:

{0.02761552; 0.19992684; 0.2131916}
{0.14428772; 0.41179806; 0.54165016}
{0.34857924; 0.32834382; 0.70581912}
{0.19639854; 0.29411363; 0.4963528}

Another approach to concurrent processing involves the use of Java threads. Threads are used by APIs such as Aparapi when multiple CPUs or GPUs are not available.

Data science applications often take advantage of the map-reduce algorithm. We will demonstrate parallel processing by using Apache's Hadoop to perform map-reduce. Designed specifically for large datasets, Hadoop reduces processing time for large scale data science projects. We demonstrate a technique for calculating the average value of a large dataset.

We also include examples of APIs that support multiple processors, including CUDA and OpenCL. CUDA is supported using Java bindings for CUDA (JCuda) (http://jcuda.org/). We also discuss OpenCL and its Java support. The Aparapi API provides high-level support for using multiple CPUs or GPUs and we include a demonstration of Aparapi in support of matrix multiplication.

You have been reading a chapter from
Java for Data Science
Published in: Jan 2017
Publisher: Packt
ISBN-13: 9781785280115
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image