Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Intelligent Workloads at the Edge

You're reading from   Intelligent Workloads at the Edge Deliver cyber-physical outcomes with data and machine learning using AWS IoT Greengrass

Arrow left icon
Product type Paperback
Published in Jan 2022
Publisher Packt
ISBN-13 9781801811781
Length 374 pages
Edition 1st Edition
Tools
Arrow right icon
Authors (2):
Arrow left icon
Ryan Burke Ryan Burke
Author Profile Icon Ryan Burke
Ryan Burke
Indraneel (Neel) Mitra Indraneel (Neel) Mitra
Author Profile Icon Indraneel (Neel) Mitra
Indraneel (Neel) Mitra
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Section 1: Introduction and Prerequisites
2. Chapter 1: Introduction to the Data-Driven Edge with Machine Learning FREE CHAPTER 3. Section 2: Building Blocks
4. Chapter 2: Foundations of Edge Workloads 5. Chapter 3: Building the Edge 6. Chapter 4: Extending the Cloud to the Edge 7. Chapter 5: Ingesting and Streaming Data from the Edge 8. Chapter 6: Processing and Consuming Data on the Cloud 9. Chapter 7: Machine Learning Workloads at the Edge 10. Section 3: Scaling It Up
11. Chapter 8: DevOps and MLOps for the Edge 12. Chapter 9: Fleet Management at Scale 13. Section 4: Bring It All Together
14. Chapter 10: Reviewing the Solution with AWS Well-Architected Framework 15. Other Books You May Enjoy Appendix 1 – Answer Key

Summary

That's all we have for you! We, the authors, believe that these are the best techniques, practices, and tools you can use to continue your journey as an architect of edge ML solutions. While some of the tools are specific to AWS, everything else should generally serve you in building these kinds of solutions. Solutions built with AWS IoT Greengrass can just as easily include components that communicate with your web services or the services of cloud vendors such as Microsoft or Google. The guiding principle of this book was to prioritize teaching you how to build and how to think about building edge ML solutions over using specific tools.

As you take your next steps, whether they are extending this book's prototype hub device, starting a new solution, or modernizing an existing solution, we hope you find value in reflecting upon the lessons you've learned and critically thinking about the tradeoffs that help you reach your goals. We welcome your feedback...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime