A CycleGAN is fundamentally similar to a DiscoGAN with one small modification. In a CycleGAN, we have the flexibility to determine how much weight to assign to the reconstruction loss with respect to the GAN loss or the loss attributed to the discriminator. This parameter helps in balancing the losses in correct proportions based on the problem at hand to help the network converge faster while training. The rest of the implementation of a CycleGAN is the same as that of the DiscoGAN.
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine