Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Transfer Learning with Python

You're reading from   Hands-On Transfer Learning with Python Implement advanced deep learning and neural network models using TensorFlow and Keras

Arrow left icon
Product type Paperback
Published in Aug 2018
Publisher Packt
ISBN-13 9781788831307
Length 438 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (4):
Arrow left icon
Nitin Panwar Nitin Panwar
Author Profile Icon Nitin Panwar
Nitin Panwar
Raghav Bali Raghav Bali
Author Profile Icon Raghav Bali
Raghav Bali
Tamoghna Ghosh Tamoghna Ghosh
Author Profile Icon Tamoghna Ghosh
Tamoghna Ghosh
Dipanjan Sarkar Dipanjan Sarkar
Author Profile Icon Dipanjan Sarkar
Dipanjan Sarkar
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Machine Learning Fundamentals FREE CHAPTER 2. Deep Learning Essentials 3. Understanding Deep Learning Architectures 4. Transfer Learning Fundamentals 5. Unleashing the Power of Transfer Learning 6. Image Recognition and Classification 7. Text Document Categorization 8. Audio Event Identification and Classification 9. DeepDream 10. Style Transfer 11. Automated Image Caption Generator 12. Image Colorization 13. Other Books You May Enjoy

Summary

A firm foundation and common ground for the understanding of concepts and techniques is very important for any journey. Through this chapter on ML fundamentals, we have tried to achieve precisely this. Before getting started with the basics of deep learning, transfer learning, and more advanced concepts, it is imperative that we form a solid foundation of ML concepts. In this chapter, we have covered quite a bit of ground and provided important pointers to study concepts in more details.

We began the chapter by understanding why machine learning is important and how it is a completely different paradigm. We briefly discussed the relationship between AI, ML, and deep learning. The chapter then moved on to present different ML techniques such as supervised, unsupervised, and reinforcement learning. We discussed in detail which different supervised and unsupervised methods are commonly used.

The chapter also included a quick introduction to the CRISP-DM model for ML project workflows along with ML pipelines. We also discussed EDA of the battles dataset from the fantasyland of Game of Thrones to apply different concepts and learn about the importance of EDA. Toward the end of the chapter, feature extraction and engineering and feature selection were introduced.

In the coming chapters, we will build upon these concepts and eventually apply the learning in chapters concerning different real-world use cases. Welcome onboard!

You have been reading a chapter from
Hands-On Transfer Learning with Python
Published in: Aug 2018
Publisher: Packt
ISBN-13: 9781788831307
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime