Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Gradient Boosting with XGBoost and scikit-learn

You're reading from   Hands-On Gradient Boosting with XGBoost and scikit-learn Perform accessible machine learning and extreme gradient boosting with Python

Arrow left icon
Product type Paperback
Published in Oct 2020
Publisher Packt
ISBN-13 9781839218354
Length 310 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Corey Wade Corey Wade
Author Profile Icon Corey Wade
Corey Wade
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Section 1: Bagging and Boosting
2. Chapter 1: Machine Learning Landscape FREE CHAPTER 3. Chapter 2: Decision Trees in Depth 4. Chapter 3: Bagging with Random Forests 5. Chapter 4: From Gradient Boosting to XGBoost 6. Section 2: XGBoost
7. Chapter 5: XGBoost Unveiled 8. Chapter 6: XGBoost Hyperparameters 9. Chapter 7: Discovering Exoplanets with XGBoost 10. Section 3: Advanced XGBoost
11. Chapter 8: XGBoost Alternative Base Learners 12. Chapter 9: XGBoost Kaggle Masters 13. Chapter 10: XGBoost Model Deployment 14. Other Books You May Enjoy

Exploring random forests

To get a better sense of how random forests work, let's build one using scikit-learn.

Random forest classifiers

Let's use a random forest classifier to predict whether a user makes more or less than USD 50,000 using the census dataset we cleaned and scored in Chapter 1, Machine Learning Landscape, and revisited in Chapter 2, Decision Trees in Depth. We are going to use cross_val_score to ensure that our test results generalize well:

The following steps build and score a random forest classifier using the census dataset:

  1. Import pandas, numpy, RandomForestClassifier, and cross_val_score before silencing warnings:

    import pandas as pd
    import numpy as np
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.model_selection import cross_val_score
    import warnings
    warnings.filterwarnings('ignore')
  2. Load the dataset census_cleaned.csv and split it into X (a predictor column) and y (a target column):

    df_census = pd.read_csv...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime