The last chapter described the process of working with images and videos using OpenCV and CUDA. We looked at the code for some basic image and video processing applications and compared the performance of OpenCV code with and without CUDA acceleration. In this chapter, we will build on this knowledge and try to develop some more computer vision and image processing applications using OpenCV and CUDA. This chapter describes the method for accessing individual pixel intensities in color and grayscale images. A histogram is a very useful concept for image processing. This chapter describes the method for calculating histograms and how histogram equalization can improve the visual quality of images. This chapter will also describe how different geometric transformations can be performed using OpenCV and CUDA. Image filtering is...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine