In supervised classification, training data is used for classification. This training data is made in such a way that it is representative of the classes or land cover types we want to classify. An unclassified image is classified using the spectral signature of the pixels in the training data or area. There are three main supervised classification algorithms that are used in QGIS: minimum distance, maximum likelihood (ML), and spectral angle mapper (SAM). For minimum distance, a pixel is assigned to a class that has a lower Euclidean distance to mean vector of a class than all other classes. In ML, each pixel is assigned to the class that has the highest probability. The SAM algorithm works by computing the angle between the mean vector of the class and the unclassified raster data, and the class for which the angle is the smallest is assigned to be...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand