Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Ensemble Learning with R

You're reading from   Hands-On Ensemble Learning with R A beginner's guide to combining the power of machine learning algorithms using ensemble techniques

Arrow left icon
Product type Paperback
Published in Jul 2018
Publisher Packt
ISBN-13 9781788624145
Length 376 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Prabhanjan Narayanachar Tattar Prabhanjan Narayanachar Tattar
Author Profile Icon Prabhanjan Narayanachar Tattar
Prabhanjan Narayanachar Tattar
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Introduction to Ensemble Techniques FREE CHAPTER 2. Bootstrapping 3. Bagging 4. Random Forests 5. The Bare Bones Boosting Algorithms 6. Boosting Refinements 7. The General Ensemble Technique 8. Ensemble Diagnostics 9. Ensembling Regression Models 10. Ensembling Survival Models 11. Ensembling Time Series Models 12. What's Next?
A. Bibliography Index

Bootstrapping survival models*

In the first section, we looked at the role of pseudovalues in carrying out inference related to survival data. The main idea behind the use of pseudovalues is to replace the incomplete observations with an appropriate (expected) value and then use the flexible framework of the generalized estimating equation. Survival analysis and the related specialized methods for it will be detailed in Chapter 10, Ensembling Survival Models, of the book. We will briefly introduce the notation here as required to set up the parameters. Let T denote the survival time, or the time to the event of interest, and we naturally have Bootstrapping survival models*, which is a continuous random variable. Suppose that the lifetime cumulative distribution is F and the associated density function is f. Since the lifetimes T are incomplete for some of the observations and subject to censoring, we will not be able to properly infer about interesting parameters such as mean survival time or median survival time. Since...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime