Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Artificial Intelligence for IoT

You're reading from   Hands-On Artificial Intelligence for IoT Expert machine learning and deep learning techniques for developing smarter IoT systems

Arrow left icon
Product type Paperback
Published in Jan 2019
Publisher Packt
ISBN-13 9781788836067
Length 390 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Dr. Amita Kapoor Dr. Amita Kapoor
Author Profile Icon Dr. Amita Kapoor
Dr. Amita Kapoor
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Principles and Foundations of IoT and AI 2. Data Access and Distributed Processing for IoT FREE CHAPTER 3. Machine Learning for IoT 4. Deep Learning for IoT 5. Genetic Algorithms for IoT 6. Reinforcement Learning for IoT 7. Generative Models for IoT 8. Distributed AI for IoT 9. Personal and Home IoT 10. AI for the Industrial IoT 11. AI for Smart Cities IoT 12. Combining It All Together 13. Other Books You May Enjoy

Logistic regression for classification


In the previous section, we learned how to predict. There's another common task in ML: the task of classification. Separating dogs from cats and spam from not spam, or even identifying the different objects in a room or scene—all of these are classification tasks. 

Logistic regression is an old classification technique. It provides the probability of an event taking place, given an input value. The events are represented as categorical dependent variables, and the probability of a particular dependent variable being 1 is given using the logit function:

 

Before going into the details of how we can use logistic regression for classification, let's examine the logit function (also called the sigmoid function because of its S-shaped curve). The following diagram shows thelogit function and its derivative varies with respect to the input X, the Sigmoidal function (blue) and its derivative (orange):

A few important things to note from this diagram are the following...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime