Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Essential Mathematics for Quantum Computing

You're reading from   Essential Mathematics for Quantum Computing A beginner's guide to just the math you need without needless complexities

Arrow left icon
Product type Paperback
Published in Apr 2022
Publisher Packt
ISBN-13 9781801073141
Length 252 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Leonard S. Woody III Leonard S. Woody III
Author Profile Icon Leonard S. Woody III
Leonard S. Woody III
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Section 1: Introduction
2. Chapter 1: Superposition with Euclid FREE CHAPTER 3. Chapter 2: The Matrix 4. Section 2: Elementary Linear Algebra
5. Chapter 3: Foundations 6. Chapter 4: Vector Spaces 7. Chapter 5: Using Matrices to Transform Space 8. Section 3: Adding Complexity
9. Chapter 6: Complex Numbers 10. Chapter 7: EigenStuff 11. Chapter 8: Our Space in the Universe 12. Chapter 9: Advanced Concepts 13. Section 4: Appendices
14. Other Books You May Enjoy Appendix 1: Bra–ket Notation 1. Appendix 2: Sigma Notation 2. Appendix 3: Trigonometry 3. Appendix 4: Probability 4. Appendix 5: References

The inverse of a matrix

It would be nice to have a way to do algebra on matrices the way we do for simple algebraic expressions, like so:

The inverse of a matrix provides us with a way to do this. It is very similar to the reciprocal for rational numbers. For rational numbers, the following is true:

In a similar way, the inverse of a matrix is defined to be a matrix that when multiplied by the original matrix, you get the identity matrix. Here it is mathematically:

The matrix inverse can then be used when trying to algebraically modify a matrix equation. Let's say we are trying to find the vector |x in the following equation:

Since we now have a multiplicative inverse of a matrix, we can multiply both sides by it to get the following:

Please remember that matrix multiplication is not commutative, so if you left multiply a matrix on one...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime