Summary
In this first chapter, you were introduced to the concept of ML for genomics. We gained a brief understanding of ML in several genomic applications in the life science, pharma, clinical, and biotechnology industries. We also looked at the rapid strides that NGS has made in the last 15 years and how it contributed to the production of genomic big data. Then, we understood how ML can be used to analyze genomic data for the development of genomic-based products.
Finally, we looked at the different programming languages, including the most popular genomic library and ML software that we will be using throughout this book. You will mainly use Python and scikit-learn for developing models, Biopython for genomic data analysis, and some open source tools for model training and productionalizing them for deploying models.
In the next chapter, we will introduce the fundamentals of genomic data analysis.