Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Science for Malware Analysis

You're reading from   Data Science for Malware Analysis A comprehensive guide to using AI in detection, analysis, and compliance

Arrow left icon
Product type Paperback
Published in Dec 2023
Publisher Packt
ISBN-13 9781804618646
Length 230 pages
Edition 1st Edition
Arrow right icon
Author (1):
Arrow left icon
Shane Molinari Shane Molinari
Author Profile Icon Shane Molinari
Shane Molinari
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Part 1– Introduction
2. Chapter 1: Malware Science Life Cycle Overview FREE CHAPTER 3. Chapter 2: An Overview of the International History of Cyber Malware Impacts 4. Part 2 – The Current State of Key Malware Science AI Technologies
5. Chapter 3: Topological Data Analysis for Malware Detection and Analysis 6. Chapter 4: Artificial Intelligence for Malware Data Analysis and Detection 7. Chapter 5: Behavior-Based Malware Data Analysis and Detection 8. Part 3 – The Future State of AI’s Use for Malware Science
9. Chapter 6: The Future State of Malware Data Analysis and Detection 10. Chapter 7: The Future State of Key International Compliance Requirements 11. Chapter 8: Epilogue – A Harmonious Overture to the Future of Malware Science and Cybersecurity
12. Index 13. Other Books You May Enjoy Appendix

Persistence homology distinguishes meaningful patterns from random data fluctuations

TDA and its tool, persistent homology, can provide innovative methods to fight cyber threats, particularly malware. To understand how it works, let’s first consider what malware is and the challenges it presents.

Recall that malware comes in many forms, from viruses to ransomware, and is continually evolving. Cybersecurity professionals must analyze vast amounts of data to detect these threats and protect systems. However, the sheer volume of data, its complex structure, and the continuously changing nature of malware make this a challenging task.

This is where TDA and persistent homology come into the picture. Recall the mountain range analogy and how it was used to explain the concept of scale. Now, let’s use a similar analogy to understand how these techniques can be applied to malware analysis.

Imagine you’re a detective trying to find a crime syndicate in a bustling...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime