As introduced in the initial chapters, big data is defined as four Vs, that is, Variance, Velocity, Volume, and Varsity. We also got introduced to Lambda architecture and how it can possibly enable merge outputs from two distinctive processing pipelines. In order to leverage big data technologies to solve processing problems, it may be a good idea to marry Lambda architecture with these Big Data architectures such that we can reap the benefits of both. Though big data refers to an end-to-end solution to handle, process, and manage information across all the four Vs, it has become quite synonymous with the Hadoop Big Data framework. While the initial implementation of Hadoop was introduced by the open source Apache community, its immediate demand brought in a lot of commercial offerings for support. Over a period of time, the community witnessed a number of customized distributions...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand