The popularity and success of deep learning has been motivated by the creation of many popular and open source deep learning frameworks that can be used for training and inference of neural networks. Caffe was one of the first popular deep learning frameworks. It was created by Yangqing Jia at UC Berkeley for his PhD thesis and released to the public at the end of 2013. It was primarily written in C++ and provided a C++ API. Caffe also provided a rudimentary Python API wrapped around the C++ API. The Caffe framework created networks using layers. Users created networks by listing down and describing its layers in a text file commonly referred to as a prototxt.
Following the popularity of Caffe, universities, corporations, and individuals created and launched many deep learning frameworks. Some of the popular ones today are Caffe2, TensorFlow, MXNet, and PyTorch. TensorFlow is driven by Google, MXNet has the support of Amazon, and PyTorch was primarily developed by Facebook.
Caffe's creator, Yangqing Jia, moved to Facebook, where he created a follow-up to Caffe called Caffe2. Compared to the other deep learning frameworks, Caffe2 was designed to focus on scalability, high performance, and portability. Written in C++, it has both a C++ API and a Python API.