Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Building Statistical Models in Python

You're reading from   Building Statistical Models in Python Develop useful models for regression, classification, time series, and survival analysis

Arrow left icon
Product type Paperback
Published in Aug 2023
Publisher Packt
ISBN-13 9781804614280
Length 420 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Authors (3):
Arrow left icon
Huy Hoang Nguyen Huy Hoang Nguyen
Author Profile Icon Huy Hoang Nguyen
Huy Hoang Nguyen
Paul N Adams Paul N Adams
Author Profile Icon Paul N Adams
Paul N Adams
Stuart J Miller Stuart J Miller
Author Profile Icon Stuart J Miller
Stuart J Miller
Arrow right icon
View More author details
Toc

Table of Contents (22) Chapters Close

Preface 1. Part 1:Introduction to Statistics
2. Chapter 1: Sampling and Generalization FREE CHAPTER 3. Chapter 2: Distributions of Data 4. Chapter 3: Hypothesis Testing 5. Chapter 4: Parametric Tests 6. Chapter 5: Non-Parametric Tests 7. Part 2:Regression Models
8. Chapter 6: Simple Linear Regression 9. Chapter 7: Multiple Linear Regression 10. Part 3:Classification Models
11. Chapter 8: Discrete Models 12. Chapter 9: Discriminant Analysis 13. Part 4:Time Series Models
14. Chapter 10: Introduction to Time Series 15. Chapter 11: ARIMA Models 16. Chapter 12: Multivariate Time Series 17. Part 5:Survival Analysis
18. Chapter 13: Time-to-Event Variables – An Introduction 19. Chapter 14: Survival Models 20. Index 21. Other Books You May Enjoy

Population versus sample

In general, the goal of statistical modeling is to answer a question about a group by making an inference about that group. The group we are making an inference on could be machines in a production factory, people voting in an election, or plants on different plots of land. The entire group, every individual item or entity, is referred to as the population. In most cases, the population of interest is so large that it is not practical or even possible to collect data on every entity in the population. For instance, using the voting example, it would probably not be possible to poll every person that voted in an election. Even if it was possible to reach all the voters for the election of interest, many voters may not consent to polling, which would prevent collection on the entire population. An additional consideration would be the expense of polling such a large group. These factors make it practically impossible to collect population statistics in our example of vote polling. These types of prohibitive factors exist in many cases where we may want to assess a population-level attribute. Fortunately, we do not need to collect data on the entire population of interest. Inferences about a population can be made using a subset of the population. This subset of the population is called a sample. This is the main idea of statistical modeling. A model will be created using a sample and inferences will be made about the population.

In order to make valid inferences about the population of interest using a sample, the sample must be representative of the population of interest, meaning that the sample should contain the variation found in the population. For example, if we were interested in making an inference about plants in a field, it is unlikely that samples from one corner of the field would be sufficient for inferences about the larger population. There would likely be variations in plant characteristics over the entire field. We could think of various reasons why there might be variation. For this example, we will consider some examples from Figure 1.2.

Figure 1.2 – Field of plants

Figure 1.2 – Field of plants

The figure shows that Sample A is near a forest. This sample area may be affected by the presence of the forest; for example, some of the plants in that sample may receive less sunlight than plants in the other sample. Sample B is shown to be in between the main irrigation lines. It’s conceivable that this sample receives more water on average than the other two samples, which may have an effect on the plants in this sample. The final Sample C is near a road. This sample may see other effects that are not seen in Sample A or B.

If samples were only taken from one of those sections, the inferences from those samples would be biased and would not provide valid references about the population. Thus, samples would need to be taken from across the entire field to create a sample that is more likely to be representative of the population of plants. When taking samples from populations, it is critical to ensure the sampling method is robust to possible issues, such as the influence of irrigation and shade in the previous example. Whenever taking a sample from a population, it’s important to identify and mitigate possible influences of bias because biases in data will affect your model and skew your conclusions.

In the next section, various methods for sampling from a dataset will be discussed. An additional consideration is the sample size. The sample size impacts the type of statistical tools we can use, the distributional assumptions that can be made about the sample, and the confidence of inferences and predictions. The impact of sample size will be explored in depth in Chapter 2, Distributions of Data and Chapter 3, Hypothesis Testing.

You have been reading a chapter from
Building Statistical Models in Python
Published in: Aug 2023
Publisher: Packt
ISBN-13: 9781804614280
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image