Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Building AI Intensive Python Applications

You're reading from   Building AI Intensive Python Applications Create intelligent apps with LLMs and vector databases

Arrow left icon
Product type Paperback
Published in Sep 2024
Publisher Packt
ISBN-13 9781836207252
Length 298 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Toc

Table of Contents (18) Chapters Close

Preface 1. Chapter 1: Getting Started with Generative AI 2. Chapter 2: Building Blocks of Intelligent Applications FREE CHAPTER 3. Part 1: Foundations of AI: LLMs, Embedding Models, Vector Databases, and Application Design
4. Chapter 3: Large Language Models 5. Chapter 4: Embedding Models 6. Chapter 5: Vector Databases 7. Chapter 6: AI/ML Application Design 8. Part 2: Building Your Python Application: Frameworks, Libraries, APIs, and Vector Search
9. Chapter 7: Useful Frameworks, Libraries, and APIs 10. Chapter 8: Implementing Vector Search in AI Applications 11. Part 3: Optimizing AI Applications: Scaling, Fine-Tuning, Troubleshooting, Monitoring, and Analytics
12. Chapter 9: LLM Output Evaluation 13. Chapter 10: Refining the Semantic Data Model to Improve Accuracy 14. Chapter 11: Common Failures of Generative AI 15. Chapter 12: Correcting and Optimizing Your Generative AI Application 16. Other Books You May Enjoy Appendix: Further Reading: Index

Summary

This chapter covered the main components of a modern transformer-based LLM and a quick overview of the LLM landscape as it stands today.

It detailed how text can be transformed into numeric data to be processed by ANNs. To summarize, sentences of a large text corpus are tokenized and assigned integer token IDs. Token IDs index into an embedding matrix, turning the integers into real-valued embedding vectors of fixed length. To create the targets for supervised training, the inputs are shifted by one token to the right, so that the target at each position becomes the token that follows in the sequence.

Sequential data can be learned with recurrent neural networks, but these have been superseded by transformers, which use an attention mechanism to learn which previous tokens are most relevant to predict the next. At every step in the sequence, the model predicts probabilities for each token in the vocabulary, which can be used to generate the next token.

The training...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime