Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Big Data Analytics with R

You're reading from   Big Data Analytics with R Leverage R Programming to uncover hidden patterns in your Big Data

Arrow left icon
Product type Paperback
Published in Jul 2016
Publisher Packt
ISBN-13 9781786466457
Length 506 pages
Edition 1st Edition
Languages
Tools
Concepts
Arrow right icon
Author (1):
Arrow left icon
Simon Walkowiak Simon Walkowiak
Author Profile Icon Simon Walkowiak
Simon Walkowiak
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. The Era of Big Data FREE CHAPTER 2. Introduction to R Programming Language and Statistical Environment 3. Unleashing the Power of R from Within 4. Hadoop and MapReduce Framework for R 5. R with Relational Database Management Systems (RDBMSs) 6. R with Non-Relational (NoSQL) Databases 7. Faster than Hadoop - Spark with R 8. Machine Learning Methods for Big Data in R 9. The Future of R - Big, Fast, and Smart Data

Applied data science with R

Applied data science covers all the activities and processes data analysts must typically undertake to deliver evidence-based results of their analyses. This includes data collection, preprocessing data that may contain some basic but frequently time-consuming data transformations, and manipulations, EDA to describe the data under investigation, research methods, and statistical models applicable to the data and related to the research questions, and finally, data visualizations and reporting the insights. Data science is an enormous field, covering a great number of specific disciplines, techniques, and tools, and there are hundreds of very good printed and online resources explaining the particulars of each method or application.

In this section, we will merely focus on a small fraction of selected topics in data science using the R language. From this moment on, we will also be using real data sets from socio-economic domains. These data sets, however...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime