Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Artificial Vision and Language Processing for Robotics

You're reading from   Artificial Vision and Language Processing for Robotics Create end-to-end systems that can power robots with artificial vision and deep learning techniques

Arrow left icon
Product type Paperback
Published in Apr 2019
Publisher Packt
ISBN-13 9781838552268
Length 356 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (3):
Arrow left icon
Gonzalo Molina Gallego Gonzalo Molina Gallego
Author Profile Icon Gonzalo Molina Gallego
Gonzalo Molina Gallego
Unai Garay Maestre Unai Garay Maestre
Author Profile Icon Unai Garay Maestre
Unai Garay Maestre
Álvaro Morena Alberola Álvaro Morena Alberola
Author Profile Icon Álvaro Morena Alberola
Álvaro Morena Alberola
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Artificial Vision and Language Processing for Robotics
Preface
1. Fundamentals of Robotics FREE CHAPTER 2. Introduction to Computer Vision 3. Fundamentals of Natural Language Processing 4. Neural Networks with NLP 5. Convolutional Neural Networks for Computer Vision 6. Robot Operating System (ROS) 7. Build a Text-Based Dialogue System (Chatbot) 8. Object Recognition to Guide a Robot Using CNNs 9. Computer Vision for Robotics Appendix

Chapter 2: Introduction to Computer Vision


Activity 2: Classify 10 Types of Clothes from the Fashion-MNIST Data

Solution

  1. Open up your Google Colab interface.

  2. Create a folder for the book, download the Dataset folder from GitHub, and upload it into the folder.

  3. Import the drive and mount it as follows:

    from google.colab import drive
    drive.mount('/content/drive')

Once you have mounted your drive for the first time, you will have to enter the authorization code mentioned by clicking on the URL given by Google and pressing the Enter key on your keyboard:

Figure 2.38: Image displaying the Google Colab authorization step

  1. Now that you have mounted the drive, you need to set the path of the directory:

    cd /content/drive/My Drive/C13550/Lesson02/Activity02/
  2. Load the dataset and show five samples:

    from keras.datasets import fashion_mnist
    (x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()

    The output is as follows:

    Figure 2.39: Loading datasets with five samples

    import random
    from sklearn import metrics
    from sklearn.utils import shuffle
    random.seed(42)
    from matplotlib import pyplot as plt
    for idx in range(5):
        rnd_index = random.randint(0, 59999)
        plt.subplot(1,5,idx+1),plt.imshow(x_train[idx],'gray')
        plt.xticks([]),plt.yticks([])
    plt.show()

    Figure 2.40: Samples of images from the Fashion-MNIST dataset

  3. Preprocess the data:

    import numpy as np
    from keras import utils as np_utils
    x_train = (x_train.astype(np.float32))/255.0
    x_test = (x_test.astype(np.float32))/255.0
    x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)
    x_test = x_test.reshape(x_test.shape[0], 28, 28, 1)
    y_train = np_utils.to_categorical(y_train, 10)
    y_test = np_utils.to_categorical(y_test, 10)
    input_shape = x_train.shape[1:]
  4. Build the architecture of the neural network using Dense layers:

    from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau
    from keras.layers import Input, Dense, Dropout, Flatten
    from keras.preprocessing.image import ImageDataGenerator
    from keras.layers import Conv2D, MaxPooling2D, Activation, BatchNormalization
    from keras.models import Sequential, Model
    from keras.optimizers import Adam, Adadelta
    def DenseNN(inputh_shape):
    
        model = Sequential()
        model.add(Dense(128, input_shape=input_shape))
        model.add(BatchNormalization())
        model.add(Activation('relu'))
        model.add(Dropout(0.2))
    
        model.add(Dense(128))
        model.add(BatchNormalization())
        model.add(Activation('relu'))
        model.add(Dropout(0.2))
    
        model.add(Dense(64))
        model.add(BatchNormalization())
        model.add(Activation('relu'))
        model.add(Dropout(0.2))
    
        model.add(Flatten())
        model.add(Dense(64))
        model.add(BatchNormalization())
        model.add(Activation('relu'))
        model.add(Dropout(0.2))
    
        model.add(Dense(10, activation="softmax"))
    
        return model
    model = DenseNN(input_shape)

    Note

    The entire code file for this activity can be found on GitHub in the Chapter02 | Activity02 folder.

  5. Compile and train the model:

    optimizer = Adadelta()
    model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy'])
    ckpt = ModelCheckpoint('model.h5', save_best_only=True,monitor='val_loss', mode='min', save_weights_only=False)
    model.fit(x_train, y_train, batch_size=128, epochs=20, verbose=1, validation_data=(x_test, y_test), callbacks=[ckpt])

    The accuracy obtained is 88.72%. This problem is harder to solve, so that's why we have achieved less accuracy than in the last exercise.

  6. Make the predictions:

    import cv2
    images = ['ankle-boot.jpg', 'bag.jpg', 'trousers.jpg', 't-shirt.jpg']
    for number in range(len(images)):
        imgLoaded = cv2.imread('Dataset/testing/%s'%(images[number]),0)
        img = cv2.resize(imgLoaded, (28, 28))
        img = np.invert(img)
    cv2.imwrite('test.jpg',img)
        img = (img.astype(np.float32))/255.0
        img = img.reshape(1, 28, 28, 1)
        plt.subplot(1,5,number+1),plt.imshow(imgLoaded,'gray')
        plt.title(np.argmax(model.predict(img)[0]))
        plt.xticks([]),plt.yticks([])
    plt.show()

    Output will look like this:

    Figure 2.41: Prediction for clothes using Neural Networks

    It has classified the bag and the t-shirt correctly, but it has failed to classify the boots and the trousers. These samples are very different from the ones that it was trained for.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image