Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Apache Spark for Data Science Cookbook

You're reading from   Apache Spark for Data Science Cookbook Solve real-world analytical problems

Arrow left icon
Product type Paperback
Published in Dec 2016
Publisher
ISBN-13 9781785880100
Length 392 pages
Edition 1st Edition
Arrow right icon
Authors (2):
Arrow left icon
Padma Priya Chitturi Padma Priya Chitturi
Author Profile Icon Padma Priya Chitturi
Padma Priya Chitturi
Nagamallikarjuna Inelu Nagamallikarjuna Inelu
Author Profile Icon Nagamallikarjuna Inelu
Nagamallikarjuna Inelu
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Big Data Analytics with Spark 2. Tricky Statistics with Spark FREE CHAPTER 3. Data Analysis with Spark 4. Clustering, Classification, and Regression 5. Working with Spark MLlib 6. NLP with Spark 7. Working with Sparkling Water - H2O 8. Data Visualization with Spark 9. Deep Learning on Spark 10. Working with SparkR

Running custom functions


While Spark SQL doesn't support a range of functions as wide as ANSI SQL does, it has an easy and powerful mechanism for registering a normal Scala function and using it inside the SQL context.

Let's say we would like to find out how many profiles fall under each age group. We have a simple function called ageGroup. Given an age, it returns a string representing the age group:

def fnGroupAge(age: Int, bucket:Int=10) = { 
val buckets = Array("0-10", "11-20", "20-30", "31-40", "41-50", "51-60", "61-70", "71-80", "81-90", "91-100", ">100") 
val bucket = buckets((age-1)/10) 
bucket 
} 

Now, in order to register this function to be used inside Spark SQL, all that we need to do is give it a name and call the register method of the SQLContext's user-defined function object:

sqlc.udf.register("fnGroupAge", (age:Long)=>ageGroup(age.toInt)) 

Let's fire our query and see the use of the function in action:

%sql select fnGroupAge(age) as ageGroup...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image