Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Apache Spark for Data Science Cookbook

You're reading from   Apache Spark for Data Science Cookbook Solve real-world analytical problems

Arrow left icon
Product type Paperback
Published in Dec 2016
Publisher
ISBN-13 9781785880100
Length 392 pages
Edition 1st Edition
Arrow right icon
Authors (2):
Arrow left icon
Padma Priya Chitturi Padma Priya Chitturi
Author Profile Icon Padma Priya Chitturi
Padma Priya Chitturi
Nagamallikarjuna Inelu Nagamallikarjuna Inelu
Author Profile Icon Nagamallikarjuna Inelu
Nagamallikarjuna Inelu
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Big Data Analytics with Spark 2. Tricky Statistics with Spark FREE CHAPTER 3. Data Analysis with Spark 4. Clustering, Classification, and Regression 5. Working with Spark MLlib 6. NLP with Spark 7. Working with Sparkling Water - H2O 8. Data Visualization with Spark 9. Deep Learning on Spark 10. Working with SparkR

SparkR DataFrame operations

SparkR DataFrames support a number of operations to do structured data processing. In this recipe, we'll see a good number of examples, such as selection, grouping, aggregation, and so on.

Getting ready

To step through this recipe, you will need a running Spark Cluster either in pseudo distributed mode or in one of the distributed modes, that is, standalone, YARN, or Mesos. Also, install RStudio. Please refer to the Installing R recipe for details on the installation of R and the Creating SparkR DataFrames recipe to get acquainted with the creation of DataFrames from a variety of data sources.

How to do it…

In this recipe, we'll see how to perform various operations SparkR data frames:

  1. Let's see how to select a column from a DataFrame:
      library(SparkR, lib.loc = c(file.path(Sys.getenv("SPARK_HOME"), 
          "R", "lib")))
      sc <- sparkR.init(master = "local[*]", sparkEnvir =   
          list(spark.driver...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image