Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Advanced Machine Learning with Python

You're reading from   Advanced Machine Learning with Python Solve challenging data science problems by mastering cutting-edge machine learning techniques in Python

Arrow left icon
Product type Paperback
Published in Jul 2016
Publisher Packt
ISBN-13 9781784398637
Length 278 pages
Edition 1st Edition
Languages
Arrow right icon
Toc

What this book covers

Chapter 1, Unsupervised Machine Learning, shows you how to apply unsupervised learning techniques to identify patterns and structure within datasets.

Chapter 2, Deep Belief Networks, explains how the RBM and DBN algorithms work; you'll know how to use them and will feel confident in your ability to improve the quality of the results that you get out of them.

Chapter 3, Stacked Denoising Autoencoders, continues to build our skill with deep architectures by applying stacked denoising autoencoders to learn feature representations for high-dimensional input data.

Chapter 4, Convolutional Neural Networks, shows you how to apply the convolutional neural network (or Convnet).

Chapter 5, Semi-Supervised Learning, explains how to apply several semi-supervised learning techniques, including CPLE, self-learning, and S3VM.

Chapter 6, Text Feature Engineering, discusses data preparation skills that significantly increase the effectiveness of all the models that we've previously discussed.

Chapter 7, Feature Engineering Part II, shows you how to interrogate the data to weed out or mitigate quality issues, transform it into forms that are conducive to machine learning, and creatively enhance that data.

Chapter 8, Ensemble Methods, looks at building more sophisticated model ensembles and methods of building robustness into your model solutions.

Chapter 9, Additional Python Machine Learning Tools, reviews some of the best in recent tools available to data scientists, identifies the benefits that they offer, and discusses how to apply them alongside tools and techniques discussed earlier in this book, within a consistent working process.

Appendix A, Chapter Code Requirements, discusses tool requirements for the book, identifying required libraries for each chapter.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image