Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Unity Artificial Intelligence Programming

You're reading from   Unity Artificial Intelligence Programming Add powerful, believable, and fun AI entities in your game with the power of Unity

Arrow left icon
Product type Paperback
Published in Mar 2022
Publisher Packt
ISBN-13 9781803238531
Length 308 pages
Edition 5th Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Dr. Davide Aversa Dr. Davide Aversa
Author Profile Icon Dr. Davide Aversa
Dr. Davide Aversa
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Part 1:Basic AI
2. Chapter 1: Introduction to AI FREE CHAPTER 3. Chapter 2: Finite State Machines 4. Chapter 3: Randomness and Probability 5. Chapter 4: Implementing Sensors 6. Part 2:Movement and Navigation
7. Chapter 5: Flocking 8. Chapter 6: Path Following and Steering Behaviors 9. Chapter 7: A* Pathfinding 10. Chapter 8: Navigation Mesh 11. Part 3:Advanced AI
12. Chapter 9: Behavior Trees 13. Chapter 10: Procedural Content Generation 14. Chapter 11: Machine Learning in Unity 15. Chapter 12: Putting It All Together 16. Other Books You May Enjoy

Summary

In this chapter, we set up two scenes and studied how to build path-following agents with obstacle avoidance behavior. We learned about the Unity3D layer feature and how to use Raycasts and SphereCasts against a particular layer selectively. Although these examples were simple, we can apply these simple techniques to various scenarios. For instance, we can set up a path along a road. We can easily set up a decent traffic simulation using some vehicle models combined with obstacle avoidance behavior. Alternatively, you could just replace them with biped characters and build a crowd simulation. You can also combine them with some finite state machines to add more behaviors and make them more intelligent.

The simple obstacle avoidance behavior that we implemented in this chapter doesn't consider the optimal path to reach the target position. Instead, it just goes straight to that target, and only if an obstacle is seen within a certain distance does it try to avoid it...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image