Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
The Handbook of NLP with Gensim

You're reading from   The Handbook of NLP with Gensim Leverage topic modeling to uncover hidden patterns, themes, and valuable insights within textual data

Arrow left icon
Product type Paperback
Published in Oct 2023
Publisher Packt
ISBN-13 9781803244945
Length 310 pages
Edition 1st Edition
Arrow right icon
Author (1):
Arrow left icon
Chris Kuo Chris Kuo
Author Profile Icon Chris Kuo
Chris Kuo
Arrow right icon
View More author details
Toc

Table of Contents (24) Chapters Close

Preface 1. Part 1: NLP Basics
2. Chapter 1: Introduction to NLP FREE CHAPTER 3. Chapter 2: Text Representation 4. Chapter 3: Text Wrangling and Preprocessing 5. Part 2: Latent Semantic Analysis/Latent Semantic Indexing
6. Chapter 4: Latent Semantic Analysis with scikit-learn 7. Chapter 5: Cosine Similarity 8. Chapter 6: Latent Semantic Indexing with Gensim 9. Part 3: Word2Vec and Doc2Vec
10. Chapter 7: Using Word2Vec 11. Chapter 8: Doc2Vec with Gensim 12. Part 4: Topic Modeling with Latent Dirichlet Allocation
13. Chapter 9: Understanding Discrete Distributions 14. Chapter 10: Latent Dirichlet Allocation 15. Chapter 11: LDA Modeling 16. Chapter 12: LDA Visualization 17. Chapter 13: The Ensemble LDA for Model Stability 18. Part 5: Comparison and Applications
19. Chapter 14: LDA and BERTopic 20. Chapter 15: Real-World Use Cases 21. Assessments 22. Index 23. Other Books You May Enjoy

PV-DBOW

Figure 8.2 is the neural network for PV-DBOW that has an input layer, a hidden layer, and an output layer. The input layer is a vector of the paragraph IDs. Assume a corpus has 500 paragraphs. Each of the paragraph IDs is one-hot encoded and the length of each paragraph vector is 500. For example, Paragraph “1” is a 1 x 500 vector where only the position of “1” is 1 and the rest are zeros.

Figure 8.2 – PV-DBOW

Figure 8.2 – PV-DBOW

Let’s see how a paragraph is prepared to feed into the neural network model.

The neural network requires data to follow the (input, output) format. Let’s first see how to do this. In Word2Vec, we organize texts into word pairs to feed into its neural network model. Its format is (word, adjacent word) for the input and output layer. In Doc2Vec, the format for the word pairs is (paragraph ID, word) for the input and output layer. Assume we have two paragraphs:

  • Paragraph 1: “...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime