Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Statistics for Machine Learning

You're reading from   Statistics for Machine Learning Techniques for exploring supervised, unsupervised, and reinforcement learning models with Python and R

Arrow left icon
Product type Paperback
Published in Jul 2017
Publisher Packt
ISBN-13 9781788295758
Length 442 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Pratap Dangeti Pratap Dangeti
Author Profile Icon Pratap Dangeti
Pratap Dangeti
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Journey from Statistics to Machine Learning FREE CHAPTER 2. Parallelism of Statistics and Machine Learning 3. Logistic Regression Versus Random Forest 4. Tree-Based Machine Learning Models 5. K-Nearest Neighbors and Naive Bayes 6. Support Vector Machines and Neural Networks 7. Recommendation Engines 8. Unsupervised Learning 9. Reinforcement Learning

Dynamic programming


Dynamic programming is a sequential way of solving complex problems by breaking them down into sub-problems and solving each of them. Once it solves the sub-problems, then it puts those subproblem solutions together to solve the original complex problem. In the reinforcement learning world, Dynamic Programming is a solution methodology to compute optimal policies given a perfect model of the environment as a Markov Decision Process (MDP).

Dynamic programming holds good for problems which have the following two properties. MDPs in fact satisfy both properties, which makes DP a good fit for solving them by solving Bellman Equations:

  • Optimal substructure
    • Principle of optimality applies
    • Optimal solution can be decomposed into sub-problems
  • Overlapping sub-problems
    • Sub-problems recur many times
    • Solutions can be cached and reused
  • MDP satisfies both the properties - luckily!
    • Bellman equations have recursive decomposition of state-values
    • Value function stores and reuses solutions

Though...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image