Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Scala for Machine Learning

You're reading from   Scala for Machine Learning Leverage Scala and Machine Learning to construct and study systems that can learn from data

Arrow left icon
Product type Paperback
Published in Dec 2014
Publisher
ISBN-13 9781783558742
Length 624 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Patrick R. Nicolas Patrick R. Nicolas
Author Profile Icon Patrick R. Nicolas
Patrick R. Nicolas
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Getting Started FREE CHAPTER 2. Hello World! 3. Data Preprocessing 4. Unsupervised Learning 5. Naïve Bayes Classifiers 6. Regression and Regularization 7. Sequential Data Models 8. Kernel Models and Support Vector Machines 9. Artificial Neural Networks 10. Genetic Algorithms 11. Reinforcement Learning 12. Scalable Frameworks A. Basic Concepts Index

Conditional random fields


The conditional random field (CRF) is a discriminative machine learning algorithm introduced by John Lafferty, Andrew McCallum, and Fernando Pereira [7:9] at the turn of the century as an alternative to the HMM. The algorithm was originally developed to assign labels to a set of observation sequences.

Let's consider a concrete example to understand the conditional relation between the observations and the label data.

Introduction to CRF

Let's consider the problem of detecting a foul during a soccer game using a combination of video and audio. The objective is to assist the referee and analyze the behavior of the players to determine whether an action on the field is dangerous (red card), inappropriate (yellow card), in doubt to be replayed, or legitimate. The following image is an example of the segmentation of a video frame for image processing:

An example of an image processing problem requiring machine learning

The analysis of the video consists of segmenting each...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime