Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
PyTorch 1.x Reinforcement Learning Cookbook

You're reading from   PyTorch 1.x Reinforcement Learning Cookbook Over 60 recipes to design, develop, and deploy self-learning AI models using Python

Arrow left icon
Product type Paperback
Published in Oct 2019
Publisher Packt
ISBN-13 9781838551964
Length 340 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Yuxi (Hayden) Liu Yuxi (Hayden) Liu
Author Profile Icon Yuxi (Hayden) Liu
Yuxi (Hayden) Liu
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Getting Started with Reinforcement Learning and PyTorch 2. Markov Decision Processes and Dynamic Programming FREE CHAPTER 3. Monte Carlo Methods for Making Numerical Estimations 4. Temporal Difference and Q-Learning 5. Solving Multi-armed Bandit Problems 6. Scaling Up Learning with Function Approximation 7. Deep Q-Networks in Action 8. Implementing Policy Gradients and Policy Optimization 9. Capstone Project – Playing Flappy Bird with DQN 10. Other Books You May Enjoy

Creating a Markov chain

Let's get started by creating a Markov chain, on which the MDP is developed.

A Markov chain describes a sequence of events that comply with the Markov property. It is defined by a set of possible states, S = {s0, s1, ... , sm}, and a transition matrix, T(s, s'), consisting of the probabilities of state s transitioning to state s'. With the Markov property, the future state of the process, given the present state, is conditionally independent of past states. In other words, the state of the process at t+1 is dependent only on the state at t. Here, we use a process of study and sleep as an example and create a Markov chain based on two states, s0 (study) and s1 (sleep). Let's say we have the following transition matrix:

In the next section, we will compute the transition matrix after k steps, and the probabilities of being in each state...

You have been reading a chapter from
PyTorch 1.x Reinforcement Learning Cookbook
Published in: Oct 2019
Publisher: Packt
ISBN-13: 9781838551964
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image