Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Python Social Media Analytics

You're reading from   Python Social Media Analytics Analyze and visualize data from Twitter, YouTube, GitHub, and more

Arrow left icon
Product type Paperback
Published in Jul 2017
Publisher Packt
ISBN-13 9781787121485
Length 312 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Baihaqi Siregar Baihaqi Siregar
Author Profile Icon Baihaqi Siregar
Baihaqi Siregar
Siddhartha Chatterjee Siddhartha Chatterjee
Author Profile Icon Siddhartha Chatterjee
Siddhartha Chatterjee
Michal Krystyanczuk Michal Krystyanczuk
Author Profile Icon Michal Krystyanczuk
Michal Krystyanczuk
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Introduction to the Latest Social Media Landscape and Importance FREE CHAPTER 2. Harnessing Social Data - Connecting, Capturing, and Cleaning 3. Uncovering Brand Activity, Popularity, and Emotions on Facebook 4. Analyzing Twitter Using Sentiment Analysis and Entity Recognition 5. Campaigns and Consumer Reaction Analytics on YouTube – Structured and Unstructured 6. The Next Great Technology – Trends Mining on GitHub 7. Scraping and Extracting Conversational Topics on Internet Forums 8. Demystifying Pinterest through Network Analysis of Users Interests 9. Social Data Analytics at Scale – Spark and Amazon Web Services

What this book covers

Chapter 1, Introduction to the Latest Social Media Landscape and Importance, covers the updated social media landscape and key figures. We also cover the technical environment around Python, algorithms, and social networks, which we later explain in detail.

Chapter 2, Harnessing Social Data - Connecting, Capturing, and Cleaning, introduces methods to connect to the most popular social networks. It involves the creation of developer applications on chosen social media and then using Python libraries to make connections to those applications and querying the data. We take you through the advantages and limitations of each social media platform, basic techniques to clean, structure, and normalize the data using text mining and data pre-processing. Finally, you are introduced to MongoDB and essential administration methods.

Chapter 3, Uncovering Brand Activity, Emotions, and Popularity on Facebook, introduces the role of Facebook for brand activity and reputation. We will also introduce you to the Facebook API ecosystem and the methodology to extract data. You will learn the concepts of feature extraction and content analysis using keywords, hashtags, noun phrases, and verbatim extraction to derive insights from a Facebook brand page. Trend analysis on time-series data, and emotion analysis via the AlchemyAPI from IBM, are also introduced.

Chapter 4, Analyzing Twitter Using Sentiment Analysis and Entity Recognition, introduces you to Twitter, its uses, and the methodology to extract data using its REST and Streaming APIs using Python. You will learn to perform text mining techniques, such as stopword removal, stemming using NLTK, and more customized cleaning such as device detection. We will also introduce the concept and application of sentiment analysis using a popular Python library, VADER. This chapter will demonstrate the classification technique of machine learning to build a custom sentiment analysis algorithm.

Chapter 5, Campaigns and Consumer Reaction Analytics on YouTube - Structured and Unstructured, demonstrates the analysis of both structured and unstructured data, combining the concepts we learned earlier with newer ones. We will explain the characteristics of YouTube and how campaigns and channel popularity are measured using a combination of traffic and sentiment data from user comments. This will also serve as an introduction to the Google developer platform needed to access and extract the data.

Chapter 6, The Next Great Technology - Trends Mining on GitHub, introduces you to GitHub, its API, and characteristics. This chapter will demonstrate how to analyze trends on GitHub to discover projects and technologies that gather the most interest from users. We use GitHub data around repositories such as watchers, forks, and open issues to while making interesting analysis to infer the most emerging projects and technologies.

Chapter 7, Scraping and Extracting Conversational Topics on Internet Forums, introduces public consumer forums with real-world examples and explains the importance of forum conversations for extracting insights about people and topics. You will learn the methodology to extract forum data using Scrapy and BeautifulSoup in Python. We'll apply the preceding techniques on a popular car forum and use Topic Models to analyze all the conversations around cars.

Chapter 8, Demystifying Pinterest through Network Analysis of Users Interests, introduces an emerging and important social network, Pinterest, along with the advanced social network analysis concept of Graph Mining. Along with the Pinterest API, we will introduce the technique of advanced scraping using Selenium. You will learn to extract data from Pinterest to build a graph of pins and boards. The concepts will help you analyze and visualize the data to find the most influential topics and users on Pinterest. You will also be introduced to the concept of community detection using Python modules.

Chapter 9, Social Data Analytics at Scale - Spark and Amazon Web Services, takes the reader on a tour of distributed and parallel computing. This chapter will be an introduction to implementing Spark, a popular open source cluster-computing framework. You will learn to get Python scripts ready to run at scale and execute Spark jobs on the Amazon Web Services cloud.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image