Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Python: Real-World Data Science

You're reading from   Python: Real-World Data Science Real-World Data Science

Arrow left icon
Product type Course
Published in Jun 2016
Publisher
ISBN-13 9781786465160
Length 1255 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (5):
Arrow left icon
Fabrizio Romano Fabrizio Romano
Author Profile Icon Fabrizio Romano
Fabrizio Romano
Phuong Vo.T.H Phuong Vo.T.H
Author Profile Icon Phuong Vo.T.H
Phuong Vo.T.H
Robert Layton Robert Layton
Author Profile Icon Robert Layton
Robert Layton
Sebastian Raschka Sebastian Raschka
Author Profile Icon Sebastian Raschka
Sebastian Raschka
Martin Czygan Martin Czygan
Author Profile Icon Martin Czygan
Martin Czygan
+1 more Show less
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Table of Contents FREE CHAPTER
Python: Real-World Data Science
Meet Your Course Guide
What's so cool about Data Science?
Course Structure
Course Journey
The Course Roadmap and Timeline
1. Course Module 1: Python Fundamentals 2. Course Module 2: Data Analysis 3. Course Module 3: Data Mining 4. Course Module 4: Machine Learning Index

Chapter 4. Data Visualization

Data visualization is concerned with the presentation of data in a pictorial or graphical form. It is one of the most important tasks in data analysis, since it enables us to see analytical results, detect outliers, and make decisions for model building. There are many Python libraries for visualization, of which matplotlib, seaborn, bokeh, and ggplot are among the most popular. However, in this chapter, we mainly focus on the matplotlib library that is used by many people in many different contexts.

Matplotlib produces publication-quality figures in a variety of formats, and interactive environments across Python platforms. Another advantage is that pandas comes equipped with useful wrappers around several matplotlib plotting routines, allowing for quick and handy plotting of Series and DataFrame objects.

The IPython package started as an alternative to the standard interactive Python shell, but has since evolved into an indispensable tool for data...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image