Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Machine Learning By Example

You're reading from   Python Machine Learning By Example Unlock machine learning best practices with real-world use cases

Arrow left icon
Product type Paperback
Published in Jul 2024
Publisher Packt
ISBN-13 9781835085622
Length 518 pages
Edition 4th Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Yuxi (Hayden) Liu Yuxi (Hayden) Liu
Author Profile Icon Yuxi (Hayden) Liu
Yuxi (Hayden) Liu
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Getting Started with Machine Learning and Python 2. Building a Movie Recommendation Engine with Naïve Bayes FREE CHAPTER 3. Predicting Online Ad Click-Through with Tree-Based Algorithms 4. Predicting Online Ad Click-Through with Logistic Regression 5. Predicting Stock Prices with Regression Algorithms 6. Predicting Stock Prices with Artificial Neural Networks 7. Mining the 20 Newsgroups Dataset with Text Analysis Techniques 8. Discovering Underlying Topics in the Newsgroups Dataset with Clustering and Topic Modeling 9. Recognizing Faces with Support Vector Machine 10. Machine Learning Best Practices 11. Categorizing Images of Clothing with Convolutional Neural Networks 12. Making Predictions with Sequences Using Recurrent Neural Networks 13. Advancing Language Understanding and Generation with the Transformer Models 14. Building an Image Search Engine Using CLIP: a Multimodal Approach 15. Making Decisions in Complex Environments with Reinforcement Learning 16. Other Books You May Enjoy
17. Index

Building an Image Search Engine Using CLIP: a Multimodal Approach

In the previous chapter, we focused on Transformer models such as BERT and GPT, leveraging their capabilities for sequence learning tasks. In this chapter, we’ll explore a multimodal model, which seamlessly connects visual and textual data. With its dual encoder architecture, this model learns the relationships between visual and textual concepts, enabling it to excel in tasks involving image and text. We will delve into its architecture, key components, and learning mechanisms, leading to a practical implementation of the model. We will then build a multimodal image search engine with text-to-image and image-to-image capabilities. To top it all off, we will tackle an awesome zero-shot image classification project!

We will cover the following topics in this chapter:

  • Introducing the CLIP model
  • Getting started with the dataset
  • Architecting the CLIP model
  • Finding images with words...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime