Let's apply SVMs to a classification problem. In recent years, SVMs have been used successfully in the task of character recognition. Given an image, the classifier must predict the character that is depicted. Character recognition is a component of many optical character recognition systems. Even small images require high-dimensional representations when raw pixel intensities are used as features. If the classes are linearly inseparable and must be mapped to a higher dimensional feature space, the dimensions of the feature space can become even larger. Fortunately, SVMs are suited to working with such data efficiently. First we will use scikit-learn to train a SVM to recognize handwritten digits. Then we will work on a more challenging problem: recognizing alphanumeric characters in photographs.
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand