In this chapter, you learned both the power of tree-based learning methods for classification problems. Single trees, while easy to build and interpret, may not have the necessary predictive power for many of the problems that we're trying to solve. To improve on the predictive ability, we have the tools of random forest and gradient-boosted trees at our disposal. With random forest, hundreds or even thousands of trees are built and the results aggregated for an overall prediction. Each tree of the random forest is built using a sample of the data called bootstrapping as well as a sample of the predictive variables. As for gradient boosting, an initial, and a relatively small, tree is produced. After this initial tree is built, subsequent trees are produced based on the residuals/misclassifications. The intended result of such a technique is to build a series of trees...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand