Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Mastering Machine Learning with R

You're reading from   Mastering Machine Learning with R Advanced machine learning techniques for building smart applications with R 3.5

Arrow left icon
Product type Paperback
Published in Jan 2019
Publisher
ISBN-13 9781789618006
Length 354 pages
Edition 3rd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Cory Lesmeister Cory Lesmeister
Author Profile Icon Cory Lesmeister
Cory Lesmeister
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Preparing and Understanding Data FREE CHAPTER 2. Linear Regression 3. Logistic Regression 4. Advanced Feature Selection in Linear Models 5. K-Nearest Neighbors and Support Vector Machines 6. Tree-Based Classification 7. Neural Networks and Deep Learning 8. Creating Ensembles and Multiclass Methods 9. Cluster Analysis 10. Principal Component Analysis 11. Association Analysis 12. Time Series and Causality 13. Text Mining 14. Creating a Package 15. Other Books You May Enjoy

Handling missing values

Dealing with missing values can be a little tricky as there's a number of ways to approach the task. We've already seen in the section on descriptive statistics that there're missing values. First of all, let's get a full accounting of the missing quantity by feature, then we shall discuss how to deal with them. What I'm going to demonstrate in the following is how to put the count by feature into a dataframe that we can explore within RStudio:

na_count <-
sapply(gettysburg, function(y)
sum(length(which(is.na(
y
)))))

na_df <- data.frame(na_count)

View(na_df)

The following is a screenshot produced by the preceding code, after sorting the dataframe by descending count:

You can clearly see the count of missing by feature with the most missing is ironically named missing with a total of 17 observations.

So what should we do here or, more appropriately, what can we do here? There're several choices:

  • Do nothing: However, some R functions will omit NAs and some functions will fail and produce an error.
  • Omit all observations with NAs: In massive datasets, they may make sense, but we run the risk of losing information.
  • Impute values: They could be something as simple as substituting the median value for the missing one or creating an algorithm to impute the values.
  • Dummy coding: Turn the missing into a value such as 0 or -999, and code a dummy feature where if the feature for a specific observation is missing, the dummy is coded 1, otherwise, it's coded 0.

I could devote an entire chapter, indeed a whole book on the subject, delving into missing at random and others, but I was trained—and, in fact, shall insist—on the latter method. It's never failed me and the others can be a bit problematic. The benefit of dummy codingor indicator coding, if you preferis that you don't lose information. In fact, missing-ness might be an essential feature in and of itself.

For a full discussion on the handling of missing values, you can reference the following articles: http://www.stat.columbia.edu/~gelman/arm/missing.pdf and https://pdfs.semanticscholar.org/4172/f558219b94f850c6567f93fa60dee7e65139.pdf.

So, here's an example of how I manually code a dummy feature and turn the NAs into zeroes:

gettysburg$missing_isNA <- 
ifelse(is.na(gettysburg$missing), 1, 0)

gettysburg$missing[is.na(gettysburg$missing)] <- 0

The first iteration of code creates a dummy feature for the missing feature and the second changes any NAs in missing to zero. In the upcoming section, where the dataset is fully processed (treated), the other missing values will be imputed.

You have been reading a chapter from
Mastering Machine Learning with R - Third Edition
Published in: Jan 2019
Publisher:
ISBN-13: 9781789618006
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image