Modeling complex functions with artificial neural networks
At the beginning of this book, we started our journey through machine learning algorithms with artificial neurons in Chapter 2, Training Simple Machine Learning Algorithms for Classification. Artificial neurons represent the building blocks of the multilayer artificial NNs that we will discuss in this chapter.
The basic concept behind artificial NNs was built upon hypotheses and models of how the human brain works to solve complex problem tasks. Although artificial NNs have gained a lot of popularity in recent years, early studies of NNs go back to the 1940s, when Warren McCulloch and Walter Pitts first described how neurons could work. (A logical calculus of the ideas immanent in nervous activity, by W. S. McCulloch and W. Pitts, The Bulletin of Mathematical Biophysics, 5(4):115–133, 1943.)
However, in the decades that followed the first implementation of the McCulloch-Pitts neuron model—Rosenblatt&...