Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Linux Device Driver Development Cookbook

You're reading from   Linux Device Driver Development Cookbook Learn kernel programming and build custom drivers for your embedded Linux applications

Arrow left icon
Product type Paperback
Published in May 2019
Publisher Packt
ISBN-13 9781838558802
Length 356 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Rodolfo Giometti Rodolfo Giometti
Author Profile Icon Rodolfo Giometti
Rodolfo Giometti
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Installing the Development System FREE CHAPTER 2. A Peek Inside the Kernel 3. Working with Char Drivers 4. Using the Device Tree 5. Managing Interrupts and Concurrency 6. Miscellaneous Kernel Internals 7. Advanced Char Driver Operations 8. Additional Information: Working with Char Drivers 9. Additional Information: Using the Device Tree 10. Additional Information: Managing Interrupts and Concurrency 11. Additional Information: Miscellaneous Kernel Internals 12. Additional Information: Advanced Char Driver Operations 13. Other Books You May Enjoy

Managing Interrupts and Concurrency

When implementing a device driver, a developer has to resolve two main problems:

  • How to exchange data with peripherals
  • How to manage interrupts that peripherals generate to the CPU

The first point was covered (at least for char drivers) in previous chapters, while the second one (and its related matter) will be the main topic of this chapter.

In the kernel, we can consider the CPU (or the internal core executing some code) running in two main execution contexts — the interrupt context and the process context. The interrupt context is very easy to understand; in fact, the CPU is in this context each time it executes an interrupt handler (that is, special code the kernel executes each time an interrupt occurs). In addition to this, interrupts can be generated by the hardware or even by the software; that's why we talk about hardware...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image