Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Keras Reinforcement Learning Projects

You're reading from   Keras Reinforcement Learning Projects 9 projects exploring popular reinforcement learning techniques to build self-learning agents

Arrow left icon
Product type Paperback
Published in Sep 2018
Publisher Packt
ISBN-13 9781789342093
Length 288 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Giuseppe Ciaburro Giuseppe Ciaburro
Author Profile Icon Giuseppe Ciaburro
Giuseppe Ciaburro
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Overview of Keras Reinforcement Learning 2. Simulating Random Walks FREE CHAPTER 3. Optimal Portfolio Selection 4. Forecasting Stock Market Prices 5. Delivery Vehicle Routing Application 6. Continuous Balancing of a Rotating Mechanical System 7. Dynamic Modeling of a Segway as an Inverted Pendulum System 8. Robot Control System Using Deep Reinforcement Learning 9. Handwritten Digit Recognizer 10. Playing the Board Game Go 11. What's Next? 12. Other Books You May Enjoy

Summary

Reinforcement learning aims to create algorithms that can learn and adapt to environmental changes. This programming technique is based on the concept of receiving external stimuli depending on the algorithm choices. A correct choice will involve a reward, while an incorrect choice will lead to a penalty. The goal of the system is to achieve the best possible result, of course. In this chapter, we dealt with the basics of reinforcement learning.

To start, we explored the amazing world of machine learning and took a tour of the most popular machine learning algorithms to choose the right one for our needs. To understand what is most suitable for our needs, we learned to perform a preliminary analysis. Then we analyzed how to build machine learning models step by step.

In the central part of the chapter, we saw that the goal of learning with reinforcement is to create intelligent agents that are able to learn from their experience. So we analyzed the steps to follow to correctly apply a reinforcement learning algorithm. Later we explored the agent-environment interface. The entity that must achieve the goal is called an agent. The entity with which the agent must interact is called the environment, which corresponds to everything outside the agent.

To avoid load problems and computational difficulties, the agent-environment interaction is considered an MDP. An MDP is a stochastic control process. Then the discount factor concept was introduced. The discount factor is used during the learning process to highlight or not highlight particular actions or states. An optimal policy can cause the reinforcement obtained in performing a single action to be even low (or negative), provided that overall this leads to greater reinforcement.

Finally, we analyzed the most common reinforcement learning techniques. Q-learning, TD learning, and Deep Q-learning networks were covered.

In the next chapter, the reader will know the basic concepts of the Markov process,
the basic concepts of random walks, understand how the random walk algorithms work,
know how to use a Markov chain to forecast the weather, and learn how to simulate
random walks using Markov chains.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime