Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
IPython Interactive Computing and Visualization Cookbook

You're reading from   IPython Interactive Computing and Visualization Cookbook Over 100 hands-on recipes to sharpen your skills in high-performance numerical computing and data science in the Jupyter Notebook

Arrow left icon
Product type Paperback
Published in Jan 2018
Publisher Packt
ISBN-13 9781785888632
Length 548 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Cyrille Rossant Cyrille Rossant
Author Profile Icon Cyrille Rossant
Cyrille Rossant
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. A Tour of Interactive Computing with Jupyter and IPython FREE CHAPTER 2. Best Practices in Interactive Computing 3. Mastering the Jupyter Notebook 4. Profiling and Optimization 5. High-Performance Computing 6. Data Visualization 7. Statistical Data Analysis 8. Machine Learning 9. Numerical Optimization 10. Signal Processing 11. Image and Audio Processing 12. Deterministic Dynamical Systems 13. Stochastic Dynamical Systems 14. Graphs, Geometry, and Geographic Information Systems 15. Symbolic and Numerical Mathematics Index

Finding a Boolean propositional formula from a truth table

The logic module in SymPy lets us manipulate complex Boolean expressions, also known as propositional formulas.

This recipe will show an example where this module can be useful. Let's suppose that, in a program, we need to write a complex if statement depending on three Boolean variables. We can think about each of the eight possible cases (true, true and false, and so on) and evaluate what the outcome should be. SymPy offers a function to generate a compact logic expression that satisfies our truth table.

How to do it...

  1. Let's import SymPy:
    >>> from sympy import *
        init_printing()
  2. Let's define a few symbols:
    >>> var('x y z')
    How to do it...
  3. We can define propositional formulas with symbols and a few operators:
    >>> P = x & (y | ~z)
        P
    How to do it...
  4. We can use subs() to evaluate a formula on actual Boolean values:
    >>> P.subs({x: True, y: False, z: True})
    How to do it...
  5. Now, we want to find a propositional formula depending...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime