Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Hands-On Unity 2021 Game Development
Hands-On Unity 2021 Game Development

Hands-On Unity 2021 Game Development: Create, customize, and optimize your own professional games from scratch with Unity 2021 , Second Edition

Arrow left icon
Profile Icon Nicolas Alejandro Borromeo
Arrow right icon
€18.99 per month
Full star icon Full star icon Full star icon Full star icon Half star icon 4.1 (22 Ratings)
Paperback Aug 2021 710 pages 2nd Edition
eBook
€17.99 €26.99
Paperback
€32.99
Subscription
Free Trial
Renews at €18.99p/m
Arrow left icon
Profile Icon Nicolas Alejandro Borromeo
Arrow right icon
€18.99 per month
Full star icon Full star icon Full star icon Full star icon Half star icon 4.1 (22 Ratings)
Paperback Aug 2021 710 pages 2nd Edition
eBook
€17.99 €26.99
Paperback
€32.99
Subscription
Free Trial
Renews at €18.99p/m
eBook
€17.99 €26.99
Paperback
€32.99
Subscription
Free Trial
Renews at €18.99p/m

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing
Table of content icon View table of contents Preview book icon Preview Book

Hands-On Unity 2021 Game Development

Chapter 1: Designing a Game from Scratch

Welcome to the first chapter of the book! I am sure you are as super excited as I am to start this amazing journey into game development with Unity. We will be approaching game development in four parts. First, we will be talking about the basics of game development, looking at topics such as how to design your game before you start coding, and then we will prototype a simple first level using Unity. Then, we will dive into graphics to explore the look and feel of a good game. Later, we will learn how to get everything moving through the use of scripting. Finally, we will see how you can finish and publish your game. As you go through the chapters, you will apply every concept to a full game project, so you will end the book with a fully functional shooter game.

In this chapter, we will design our game, Super Shooter. This phase is known as pre-production, where we will create a development plan. Our game design will include all the functionality we want in our game: the player character, the non-player characters, game assets, animations, and more. We will also use screen mock-ups to document our game's design. We will look at related concepts regarding the use of Unity for our game along the way. We will be discussing which pieces of documentation are necessary for all design work we will be doing throughout this chapter.

Specifically, we will examine the following concepts in this chapter:

  • Game concept
  • Game characters
  • Gameplay
  • The difficulty balance
  • Documentation

Game concept

Why not just start developing our game instead of designing it? This question is spawned from the excitement of developing games, especially with the Unity game engine. All games start with an idea. That idea is translated into a design, and that design is the basis for development and, eventually, the final game.

A game's design is like a blueprint for a house. You would not consider building a house without a blueprint, and it is an equally bad idea to develop a game without designing it first. The reason for this is to save time and frustration. For larger projects, time wasted also means unnecessary funds are expended.

Imagine that you employed a project team of 12 developers, animators, and artists. If you shared your game idea, would they have enough information to go on? Would they create a great game, but not the game you had in mind? All we are doing with our game design is documenting as much as we can in the beginning so that the development process is purposeful. Without question, you will continually modify your game's design during development, so having a strong base from which to start is critical to your success.

Our game design will serve as the foundation for the look of our game, what the player's objectives are, what the gameplay will be, supporting user actions, animations, audio, Artificial Intelligence (AI), and victory conditions. That is a lot to think about and underscores the importance of translating the game idea into the game design.

Throughout the book, we will be covering a range of components. However, in this section, we will cover those that appear in the following list:

  • Game idea
  • Input controls
  • Winning and losing

So, let's look at each component in more detail.

Game idea

The basic concept of our Super Shooter game is that it will be a 3D game featuring a Futuristic Hero Soldier as the player character. The character must fight against Enemy Soldiers, who are intent on destroying our Hero's base and anyone that gets in their way, including our Hero.

Here is an image of what our game will look like:

Figure 1.1 – Our hero shooting bullets at enemies

Figure 1.1 – Our hero shooting bullets at enemies

Now that we have a general idea of what the game is going to be, let's talk about how the player will control the character.

Input controls

It is important to consider how players will interact with our game. Players have an expectation that the industry norms for user controls will be implemented in games, which is why, for our example, the player will control our Hero using the standard set of controls.

Our default set of user input controls, as shown in the following figure, will consist of the keyboard and mouse:

Figure 1.2 – Controls scheme

Figure 1.2 – Controls scheme

We will configure and program our game so that user input from the keyboard matches the key and action pairings shown in the following table:

Figure 1.3 – Key mapping

Figure 1.3 – Key mapping

The mouse will also be a significant source of user input. We will implement two components using the mouse, as indicated in the following table:

Figure 1.4 – Mouse mapping

Figure 1.4 – Mouse mapping

The left mouse button will be our action button to shoot bullets, while the horizontal mouse motion will allow us to rotate our character and face the enemies. As all enemies and the player are going to be moving across a flat surface, it is not necessary to move the camera up and down.

That's how we handle input, but we also need to end the game session at some point! Let's talk about how the player will win and lose.

Winning and losing

Our winning condition will be when all the Enemy waves have been eliminated.

There will be two different ways the player can lose the game:

  • The first losing condition is when the base life becomes 0.
  • The second losing condition is if the Hero's life becomes 0.

From this short description, you can tell that there will be several things to keep track of, including the following:

  • The number of remaining Waves
  • The health of the Player's Base
  • The health of our Hero

Now that we have defined what is called the game's core loop (start a level, play it, win/lose it, repeat), let's dive deeper into the specific details, starting with our characters.

Game characters

Our game will feature several objects, but only two game characters. The first game character is our Hero and will be controlled by the player. The second type of game character is the Enemies. They are non-player characters that are controlled by AI. Let's look more closely at both of these characters.

Hero

The player will play our game as the Hero, our game's protagonist. So, what can our Hero player character do? We already know we will be able to move them throughout our game environment using a combination of keyboard and mouse inputs. We also know that the left mouse button—our action button—will cause them to shoot bullets.

Important note

Because the Hero is controlled by a human player, it is referred to as the Player Character.

We will implement the following animations for the Hero:

  • Idle: This animation will play when the character is not being moved by the player.
  • Run: This animation will play when the character is being moved by the player.
  • Shoot: This is an animation that will cause the Hero to shoot a bullet.

That's our player. Now, let's discuss our enemy character.

Enemies

Our game's antagonists will be Enemy Soldiers. We will control how many of them we want in our game and where they are placed. We will also control their behavior through AI. The Enemies will go straight to the base and, once there, they will start damaging it. We will determine how long it takes for our base to be completely destroyed. If during their journey to the base, the enemy encounters the player, they will prioritize shooting at them.

Important note:

Because the Enemy is controlled by AI and not a human player, it is referred to as a Non-Player Character (NPC).

The soldiers will share the following two animations, which the Player Character also uses, but they will be executed in different scenarios:

  • Run: This animation will play when the Enemy's AI is moving the enemy toward the base.
  • Shoot: This is an animation that will be played when the AI decides to shoot at the Player's Base or the Player's Character.

Careful planning and scripting will be required to create the desired Enemy behaviors; this will include decisions regarding the number and placement of the Enemies, and we will be tackling this during the designing phase and also during the development.

Now that we have defined our characters, let's discuss how the game will be played, looking at the specific details.

Gameplay

The game will start with the player in the center of the game world. The Hero, controlled by the player, will need to defend the Base from the Enemies. To fend off the Enemies, the Hero can shoot bullets. The goal is to defeat all the Enemies before the Base is completely destroyed by them.

Let's look at how we will make all this happen. The following gameplay components are covered in this section:

  • Game-world layout
  • Starting condition
  • Ending condition
  • Point system
  • Heads-Up Display (HUD)

We will cover each of the preceding components and discuss how they change the game experience. Let's start by talking about how the game world will be designed.

Game-world layout

We will create a base environment that consists of large metallic floor tiles, walls, and doors where the enemies will spawn. The base building will be located at the opposite end of the Enemies' Spawn positions (the Doors in the following figure), where the enemies need to reach to start attacking it.

Here is a mock-up of the shape our game world will take:

Figure 1.5 – Base layout

Figure 1.5 – Base layout

There are four basic things illustrated in the preceding mock-up, listed as follows:

  • Wall: Impenetrable barriers that prevent the player from going outside the play area.
  • Door: Impenetrable, like the walls, but will also serve as the Spawn Position of the Enemies. The Enemies will spawn behind them and can penetrate them to enter our Base Area.
  • Player Start: This is the Hero's start position.
  • Base Building: Our Base. The enemies must be close enough to attack it.

With our base-level design finished, let's discuss how the player will enter that world.

Starting condition

When our game is first launched, we will have several starting conditions set. Here is a list of those conditions:

  • The number and placement of Enemies' Spawn Points: As you saw in our earlier mock-up, there will be several possible spawn points in the game (the doors).
  • The number of Waves, the number of Enemies in each Wave, and how often the enemies will spawn: We will write a script to spawn waves of enemies, which will be used for each wave.
  • Our final starting condition is the base placement: As you can see from the preceding figure, this is placed on the opposite side of the doors—so, the enemy must traverse the whole empty space between them, giving the player a chance to attack them.

We have defined the enemy spawning rules and how the player can play the game. Now, let's talk about how the game will end, looking at the exact implementation of this.

Ending condition

So far, we have established that we will track several components in the game. They are as follows:

  • Remaining Waves: A wave is considered finished when all enemies in it die.
  • Base Health: Damaged by the enemies.
  • Player Health: Also damaged by the enemies.

Based on what we decided earlier regarding the end-of-game condition, we can apply the following mathematical checks to determine whether the game has ended and what the outcome is. Each end-of-game condition is listed in the following table, along with the outcome:

Figure 1.6 – End-of-game conditions

Figure 1.6 – End-of-game conditions

In order to implement these three end-of-game conditions, we know we must track the number of waves, player health, and base health.

Now that we have a full game, let's think about how we can make it more rewarding, by implementing a classic point system.

Point system

Since we are tracking key information that involves numbers, it makes it easy for us to implement a point system. We could, for example, give the player 50 points each time an Enemy is exterminated, and we could also take away points each time an Enemy causes damage to the base. In our case, we will settle with just giving points when Enemies are killed, but you can feel free to expand this area if you want to.

Now, we have several systems that the player needs to be aware of, but right now, the player hasn't got any way to make informed decisions about those systems. So, let's see how we can improve that, using an HUD.

HUD

We have decided to keep track of information during gameplay that has value beyond calculating points at the end of the game. The player will want to see this information as it tends to provide motivation and adds to the fun of the game. So, we will create an HUD for the player, and dynamically update the data in the game.

Important note:

An HUD is a visual layer of information that is always present on the screen.

Here is a mock-up of what our HUD will look like in our Super Shooter game:

Figure 1.7 – UI layout

Figure 1.7 – UI layout

As you can see, there are several components to our HUD, as follows:

  • Hero Health: A classic health bar that allows us to see the amount of life left. We choose a bar instead of a number because it is easier to see in the middle of an intense fight, instead of reading a number.
  • Hero Avatar: An image next to the health bar just to show our Hero's face.
  • Score: The number of points we have gathered.
  • Bullets: The number of bullets remaining. The player must check this number frequently to avoid running out of bullets, as they are limited. Anyway, at the end of the book, you will be more than capable of creating a bullet-drop system if you want to.
  • Remaining Waves / Remaining Enemies: Information about the current state of the wave and game, just to let the player know when the game is going to end, putting some pressure on them in the process.
  • Base Health: Another important piece of information so the player can see the health of the Base. It's of a sufficient size to let the player notice when the base is being attacked and take action in that case.

Finally, we have a simple, yet fully fledged starter game design with lots of rules and specifications about how it will behave, and we can start creating our game right now. However, there's a good practice that is never too soon to implement: balancing the game's difficulty.

The difficulty balance

There are a lot of considerations to make when determining how difficult your game should be. If it is too difficult, players will lose interest, and if the game is too easy, it might not appeal to your intended audience. Some games include difficulty options for users to select from. Other games have multiple levels, each with increasing difficulty. There are several questions that we must contend with in order to achieve our desired difficulty balance.

In this section, we will first look at some questions relating to difficulty balance, followed by our implementation plan.

Difficulty balance questions

There are a lot of questions about our game that we need to consider in our game design. A review of the questions in this section will help us gain an appreciation of the issues that even a simple game such as ours must contend with, in order to achieve the desired difficulty balance.

The first set of questions, listed here, relates to the overall implementation of difficulty in our game:

  • Should we have different levels of difficulty, selectable by the player?
  • What specifically will be different with each difficulty level?
  • Should we have multiple game levels, each with an increased amount of difficulty?
  • What specifically will be different with each game level?

Consider the following questions regarding the Enemies in our game:

  • How many Enemies should be spawned in each Wave?
  • At what distance should an Enemy become aware of the Hero?
  • How much damage should an Enemy inflict on the Player with each attack?
  • How much damage can an Enemy endure before it dies?

The next set of questions listed here refers to our playable character, the Hero:

  • How much life should the character have?
  • How much damage will the character take from a single enemy attack?
  • Should the character be able to outrun Enemies?

We also have the base and bullets to account for in our game. Here are a couple of questions for each of those game assets that we will implement in our game. In the case of the base, the questions are as follows:

  • How many attacks should it take for an enemy to destroy a base?
  • What is the ideal max number of enemies spawned in a Wave?
  • Where should Doors and the Base be located in the game environment?

And now, let's talk about questions in the case of Bullets, as follows:

  • At what pace should the player shoot bullets?
  • At what pace should the enemy shoot bullets?
  • How much damage will the bullets inflict on the Enemies?
  • How much damage will the bullets inflict on the Player?

As you can see, there are several questions that we need to answer as part of our design. Some of the questions may seem redundant as they relate to more than one component in the game. Now, let's answer some of those.

Implementation plan

Based on the questions posed in the last section, we must come up with some answers. Here is a list of some of those decisions:

  • We will spawn five enemies in the first wave and add two new enemies per consecutive wave.
  • We will establish a pretty small vision area for the Enemies, making it easy for the Hero to sneak past them and, perhaps more importantly, outrun them.
  • We will configure the Player's bullets to damage enemies so that two bullets are needed to kill them.
  • We will configure the Enemies bullets to damage the player so that 10 bullets are needed to kill them.
  • The Player will shoot bullets at a frequency of 2 per second.
  • The Enemy will shoot 1 per second.

It's important to take into account that this is the first balance pass, and we will surely change this based on the testing we will carry out when the game is implemented. The idea is to consider this first version of the game as a Prototype, which will be tested on a small group of players to validate our ideas and iterate them. The invaluable feedback of the early players of the game could convert it completely. Usually, a Prototype is a quick version of the game, made with the most minimal features possible to quickly test and discard ideas. After a fair amount of iterations and testing sessions on the prototype, we will have solid ground to start the real development of the game (or discard it completely if we can't create a fun game).

In this book, we will skip the Prototype phase and jump directly to the development of the game due to the scope of the book, but consider doing Prototypes before starting any real project. Just remember, a prototype is a quick, cheaply done version of the project with the sole purpose of testing ideas. We will probably discard the prototype project entirely before starting the real development, so don't spend too much time doing it with clean and proper practices. Now, we can say the game design is completed… or can we? Actually, the game design never ends, even after prototyping!. It will keep evolving as the game is developed, but let's keep that for later. Now, let's talk about how we can communicate our great ideas with everyone in our team, using documentation.

Documentation

Now that we have covered all the main aspects of our game, it is important to prepare them to be shared with others. Throughout this book, you will probably work alone, but in real-life production, you will likely work with others, so sharing your vision is a crucial skill you need to learn in order to create successful games. You will not only be sharing your vision with your teammates, but also with potential investors that want to put money into your game project (if you convince them to do so). In this section, we will give recommendations about how to properly format your game information into comprehensible documents.

Game Design Document (GDD)

This document is basically the Encyclopedia of your game. It contains a breakdown of all the aspects of it, each one with detailed explanations about how the different game systems should work. Here, you will put the questions and answers we previously looked at in the Implementation Plan, and you will deep dive into those. Remember that you have an idea in your head, and making sure that others grasp that idea is complicated, so don't underestimate this important task.

Maybe you are making a game all by yourself and you think you don't need a GDD because all the ideas can fit in your head. This might be true for very small games, but any size of game and team can benefit from a GDD. It will serve as your notebook to put down your own ideas and read them. This is important because in your head everything makes sense, but once you read your own ideas and review them, you will find lots of blind spots that can easily be fixed before discovering them when coding the entire game.

Let's start by talking about how a GDD can be structured.

GDD formats

Sadly, there's no standard way of creating a GDD. Every company and team has its own way of doing this, not only in terms of which tool to use to create it but also the content of the document. This varies a lot according to the size of the team (or teams), the type of game, and the general culture of the company behind the game. As a matter of fact, some companies actually believe that there's no need to create a GDD.

A good idea when starting to create GDDs is to check out existing published GDDs of several games. There are lots of them out there, including big, well-known games (such as Doom). Most of them are, generally, Word documents with sections explaining the game systems (such as weapons, inventory, and so on) and the list of all characters, while some can be just a list of bullets explaining certain facts about the different pieces of the game. After that, you can start experimenting with different GDD formats that fit well with your project and your team.

Once you have decided on a good format, you must decide how you will actually write that format, and besides using pen and paper, a better idea is to use all those great digital tools out there. Let's look at some of them.

GDD creation tools

After reviewing existing GDDs, the next step is to pick a proper tool to write your GDD. The first matter you need to take into account is that the GDD will change… a lot… very often… all the time. In the process of creating the game, you will validate or discard ideas you wrote in the GDD, so using a dynamic tool is a good idea. This can be accomplished with any text processor you are familiar with, but there are other problems you need to tackle, so maybe text processors won't be enough.

Your GDD will be big… I mean, BIG, even for simple games. It will have lots of sections, and you will find cases where whole sections will refer to other sections, generating a big net of links between several parts of the document. A good tool for managing this instead of a text processor is using any kind of wiki, which I strongly recommend in cases like this. They allow you to break down the whole GDD into articles that can be easily edited and linked to others, and also, lots of wikis allow you to edit articles collaboratively. There are other additional features, such as comments that allow a whole conversation about a feature inside the GDD, with these recorded for future reference. The Wikipedia page relating to GDDs can be seen in the following screenshot:

Figure 1.8 – Wikipedia site

Figure 1.8 – Wikipedia site

Moreover, you can also use other tools such as Google Drive, which allows you to mix different types of documents—from regular text documents to dynamic slides—to create presentations, communicating complex aspects in a simple yet powerful medium. Also, Google Drive has lots of great collaborative tools that improve the way several people work on the GDD.

All the tools we described are generic solutions to writing documents in general, and they can work like a charm, but there are other tools specifically crafted for games (for example, Articy Draft).

Now, let's start writing our GDD. I know I said there's no standard format, but let's at least see what every GDD should have, starting with the elevator pitch.

Elevator pitch

Imagine you are riding in an elevator, and on the next floor, an important game investor gets in. They push the tenth-floor button, so you have eight floors' worth of time to convince them to throw money into your pocket to help you create a game. I know this is an improbable case, but in real life, when you are in front of an investor at a round table, you won't have lots of time to convince them. Remember that behind you there's a queue of maybe thousands of developers wanting to do the same, so you must be quick and visceral, and that's why having a good elevator pitch is so important.

An elevator pitch is probably the first sentence you will find in your GDD, and the most important one. It needs to describe your game in no more than two lines and convince the person reading the GDD that your game is a great idea—you need to make them want to play your game right now. Yes, it sounds super ambitious, and it is, but this can separate you from the whole crowd of developers wanting to get some funding for their game.

Again, there's no standard formula to create a successful elevator pitch (we would all be rich if such a thing existed), but here are some tips to take into account:

  • You must make your pitch in no more than 10 seconds. Any longer, and you will lose the interest of the person you are trying to convince.
  • You must sound like you believe in your own idea; nobody is going to invest in a game you are not sure is the next big release.
  • Don't use any technical words (I'm looking at you, programmers).
  • Include what differentiates your game from all the other games out there.
  • Convince any person close to you to play the game, trying to test it with the most honest person you can find—a person that won't be bothered about shattering your idea into pieces (if your idea really deserves that).
  • Practice your pitch over and over again, in front of a mirror, until you can say it nicely, clearly, and in one shot.

Here are some examples of an elevator pitch:

  • Imagine yourself slaughtering giant Greek gods with just your arms and your strength until you become the king of Olympus. You will feel that power in [INSERT NAME OF TOTALLY NON-EXISTENT GAME HERE].
  • Civilization has fallen. A horrendous infection turns people into zombies. You have the only cure, and must traverse the whole country to deliver it, or humankind will collapse.

Okay—nowadays, those pitches are not super original, but a few years ago they were. Imagine the power that those pitches had at that time; you must find something similar. I'm not saying it's easy but look how just two lines can be the start of amazing experiences, so focus first on writing those two lines, and then the rest of the game.

Now you have gained the attention of an investor, it's time to show them all the gameplay systems and the little details to hype them up further… well, no, not right now. You have just gained their attention; you haven't convinced them yet. It's time to start talking a little bit about your game, and a high concept is a good way of doing so.

High concept

A high concept is a series of statements that further describe your game, but again, in a simple and concise way. Even if you are not trying to convince an investor, those statements will outline the way your game will be defined.

A good high concept can include sections such as the following ones:

  • Elevator pitch: As we explained in the previous section.
  • Genre: Maybe you are creating something new that has never been seen before, but it will probably be inspired by several other games. Here, you will specify the type of games on which you are basing your idea, so the reader of this document can start imagining how the game will be played. Later, you will specify the differences, but it is better to put a well-known idea forward first to start constructing the concept in the mind of the reader. Also, you can specify here the point of view the player will have in the game and the setting—for example, a Top-Down, Medieval Roguelike Role-Playing Game (RPG).
  • Platform and Demographics: You need to be very clear about who will play your game. Creating a game for adults in North America is not the same as creating a game for Chinese teenagers, or games for business people who want to distract themselves for a few minutes on their way back home from work. Those profiles will want different experiences, with different levels of challenge and game session length. They will even use different devices to play games. Taking this into account will help you find the game mechanics and balance that best fits your target audience. It's very common to say that you are creating a game for yourself, but remember that you won't be buying that game, so also think about your wallet when creating the game—for example, casual players of mobile platforms.
  • Features: Create a shortlist of no more than three or five features that your game will have. Select features according to the genre you have chosen—for example, you will shoot waves of enemies with a giant array of weapons, or you will level up your ship to improve its stats.
  • Unique Selling Points (USPs): This is similar to the features list, but here, you will include the features that differentiate your game from the others out there (no more than three or five)—for example, you can traverse the scene using parkour-style moves, or you can craft brand new weapons using looted materials. Think about how unique those features were years ago.

Again, there's no ideal high concept. Maybe you will find some other aspects of your game that can be highlighted here and add them to the document, but try to keep this all on just one page.

Now that we have discussed what every GDD should have, let's talk about what a GDD may have.

Tips for creating GDDs

Now, it's time to define what the whole game is. We said there's no standard format for GDDs, but at least we can take into account several good practices when creating them. The following list highlights a few of them:

  • Readability: Your GDD must be prepared to be read by anyone, including people without game development knowledge. Don't use any technical words (guess who I'm still looking at) and try to keep things simple. A good test of your GDD readability is to give it to your granny or anyone that you see as being as far from gaming as possible, and that person must be able to read it.
  • Setting and introduction: Before you start describing the game mechanics, put the reader inside the game. Describe the world, the player character, their backstory, their motivations, and what the main problem is that the player needs to struggle with. Make the reader of the GDD interested in the setting of the game and want to keep reading, to see how they will be able to play the game and tackle all the quests the player will face in the game.
  • Gameplay sections: These are sections that break the game into several systems and subsystems linked to each other. Some examples can be Inventory, Quests, Crafting, Battle, Movement, Shops, and so on. You will want to be super specific about every aspect of how those systems work because—remember—this document will be used by the team to craft the code and assets of your game. All the analysis we did in the previous sections of the chapter will be part of the GDD and will be further explained and analyzed.
  • Content sections: You will also want to create content sections, such as the ones we previously designed. These can be—but are not limited to—Characters, Story, World, Levels, Aesthetics, Art Assets, Sound and Music Assets, Economics, and Input.
  • Share your idea: Before immortalizing your ideas in the GDD and making everyone start crafting them, discuss the different GDD sections before marking them as finished. Discuss with your team, people on the internet, friends—anyone and everyone can give you valuable feedback about your idea. I'm pretty sure you are thinking that your idea will be stolen by some random person on the internet who will release the same game before you—and that can happen—but I'm not saying share the whole GDD, just some details about certain implementations you are not sure about.
  • Keep control: Everyone in the team is a game designer—some more than others. Everyone will have ideas and things they will do differently. Listen to them—doing so will be useful, but remember you are in charge and you will have the final say. You need to be open, but set some limits and don't deviate from your original idea and concept. Prevent the famous feature creep, which consists on lots and lots of game systems unnecessarily, and know when enough is enough, especially considering the limited amount of resources we will have when beginning to create games. Again, not an easy task—you will learn this the hard way, believe me, but remember this when that happens (I told you!).
  • The game will change: I already said that, but I like to stress this as much as I can. The game will change a lot due to many reasons you will find in the process of creating it. You may find that X mechanic is not that fun, you could have created a better way of handling Y system, or maybe test sessions with players prove that Z level needs to be completely redesigned. Be open to change and pivot your game idea when needed. If you do this the right way, your game won't be as you originally imagined but will be a better version of it.
  • Graphics: Use graphics, diagrams, charts, and so on. Try to prevent huge text walls. Remember that a picture is worth a thousand words. You are communicating, and nobody wants to spend valuable minutes trying to understand what you want to say. Improve your visual communication skills, and you will have a focused team.
  • Paper prototypes: You can test some ideas in your head on paper before putting them in the GDD. Even if your game is a frenetic "beat 'em up," you can have little paper characters moving around a table, seeing how they can attack the player, and which movement pattern they will have. Do some math to look at how to perfect timing, damage, health values, and so on.
  • Regular prototypes: While your game is being developed, the GDD will constantly change based on player feedback. You must test your game, even if it's not finished, and get feedback from players as early as you can. Of course, they will tell you lots of things that you already know, but they will see lots of problems you don't see because you are creating and playing your game every day. They have the advantage of playing the game for the first time, and that is a real change.

After this, we can start creating our GDD, and remember: you will need to find out what format works best for you.

Game design and GDD creation is a complex topic that could be explored in several chapters, but there are lots of books out there that do exactly that, and game design is not the main topic of this book.

Summary

In this chapter, we fully designed our Super Shooter game, and we plan to use our design to drive our development efforts. Our game design includes gameplay, the player character, the non-player characters, game assets, animations, and more. We used screen mock-ups to help document our game's design. In addition, we planned our game's difficulty balance to help ensure the game is appropriately difficult based on user selection. We talked about what a GDD is, how we can create one, and how it and the game design will change during game production.

Remember that this is important because you want to answer all the questions you can before coding your game. If you don't do this, you will pay for it by having to recode parts of your game over and over for each unforeseen problem. You cannot prevent all possible complications, but at least a good amount will be sorted out with this analysis.

In the next chapter, you will learn how to start using Unity. You will gain knowledge of why Unity is a great option to start creating games. You will also create your first game project and analyze how it is composed.

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Unleash the capabilities of C# scripting to create UIs, graphics, game AI agents and more
  • Explore Unity's latest tools, including Universal Render Pipeline, Shader Graph, UI Toolkit, Visual Scripting, and VFX graph, to enhance graphics and animation
  • Build an AR experience using Unity’s AR Foundation

Description

Learning how to use Unity is the quickest way to creating a full game, but that’s not all you can do with this simple, yet comprehensive suite of video game development tools – Unity is just as useful for creating AR/VR experiences, complex simulations, real-time realistic rendering, films, and practical games for training and education. Hands-On Unity 2021 Game Development outlines a practical journey to creating your first full game from the ground up, building it step-by-step and applying your knowledge as you progress. Complete with hands-on tutorials and projects, this easy-to-follow guide will teach you how to develop the game using several Unity tools. As you advance, you will learn how to use the Unity engine, create simple scripts using C#, integrate graphics, sound, and animations, and manipulate physics to create interesting mechanics for your game. You’ll be able to apply all the knowledge that you gain to a real-world game. Later chapters will show you how to code a simple AI agent to challenge the user and use profiling tools to ensure that the code runs efficiently. Finally, you'll work with Unity's AR tools to create AR experiences for 3D apps and games. By the end of this Unity book, you will have created a complete game and built a solid foundation in using a wide variety of Unity tools.

Who is this book for?

This book is best suited for game developers looking to upgrade their knowledge and those who want to migrate their existing skills to the Unity game engine. Those with prior Unity knowledge will also benefit from the chapters exploring the latest features. While you’ll still able to follow along if you don’t have any programming experience, knowing the fundamentals of C# programming will help you get the most out of this book.

What you will learn

  • Explore both C# and Visual Scripting tools to customize various aspects of a game, such as physics, gameplay, and the UI
  • Program rich shaders and effects using Unity s new Shader Graph and Universal Render Pipeline
  • Implement postprocessing to improve graphics quality with full-screen effects
  • Create rich particle systems for your Unity games from scratch using VFX Graph and Shuriken
  • Add animations to your game using the Animator, Cinemachine, and Timeline
  • Use the brand new UI Toolkit package to create user interfaces
  • Implement game AI to control character behavior

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Aug 20, 2021
Length: 710 pages
Edition : 2nd
Language : English
ISBN-13 : 9781801071482
Languages :
Tools :

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Product Details

Publication date : Aug 20, 2021
Length: 710 pages
Edition : 2nd
Language : English
ISBN-13 : 9781801071482
Languages :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
€18.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
€189.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts
€264.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total 122.97
Learning C# by Developing Games with Unity 2021
€47.99
Hands-On Unity 2021 Game Development
€32.99
Unity 2021 Cookbook
€41.99
Total 122.97 Stars icon

Table of Contents

28 Chapters
Section 1 – Our First Level Chevron down icon Chevron up icon
Chapter 1: Designing a Game from Scratch Chevron down icon Chevron up icon
Chapter 2: Setting Up Unity Chevron down icon Chevron up icon
Chapter 3: Working with Scenes and Game Objects Chevron down icon Chevron up icon
Chapter 4: Grayboxing with Terrain and ProBuilder Chevron down icon Chevron up icon
Chapter 5: Importing and Integrating Assets Chevron down icon Chevron up icon
Section 2 – Improving Graphics and Sound Chevron down icon Chevron up icon
Chapter 6: Materials and Effects with URP and Shader Graph Chevron down icon Chevron up icon
Chapter 7: Visual Effects with Particle Systems and Visual Effect Graph Chevron down icon Chevron up icon
Chapter 8: Lighting Using the Universal Render Pipeline Chevron down icon Chevron up icon
Chapter 9: Fullscreen Effects with Postprocessing Chevron down icon Chevron up icon
Chapter 10: Sound and Music Integration Chevron down icon Chevron up icon
Chapter 11: User Interface Design Chevron down icon Chevron up icon
Chapter 12: Creating a UI with the UI Toolkit Chevron down icon Chevron up icon
Chapter 13: Creating Animations with Animator, Cinemachine, and Timeline Chevron down icon Chevron up icon
Section 3 – Scripting Level Interactivity with C# Chevron down icon Chevron up icon
Chapter 14: Introduction to C# and Visual Scripting Chevron down icon Chevron up icon
Chapter 15: Implementing Movement and Spawning Chevron down icon Chevron up icon
Chapter 16: Physics Collisions and Health System Chevron down icon Chevron up icon
Chapter 17: Win and Lose Condition Chevron down icon Chevron up icon
Chapter 18: Scripting the UI, Sounds, and Graphics Chevron down icon Chevron up icon
Chapter 19: Implementing Game AI for Building Enemies Chevron down icon Chevron up icon
Chapter 20: Scene Performance Optimization Chevron down icon Chevron up icon
Section 4 – Releasing Your Game Chevron down icon Chevron up icon
Chapter 21: Building the Project Chevron down icon Chevron up icon
Chapter 22: Finishing Touches Chevron down icon Chevron up icon
Chapter 23: Augmented Reality in Unity Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon

Customer reviews

Top Reviews
Rating distribution
Full star icon Full star icon Full star icon Full star icon Half star icon 4.1
(22 Ratings)
5 star 68.2%
4 star 9.1%
3 star 4.5%
2 star 4.5%
1 star 13.6%
Filter icon Filter
Top Reviews

Filter reviews by




Melisa Bersais Oct 21, 2021
Full star icon Full star icon Full star icon Full star icon Full star icon 5
I like how it takes you step by step from the design of the game til building itSome cool things I read in this book that are in the new versions of unity: prefab variants, Shader Graph, Vfx Graph, Cinemachine and Universal render pipelineIt’s a great book for beginners and also for experienced users who will find good explanations of how things work internally like for example the shader pipeline.It is well written and very easy to follow. I highly recommend it.
Amazon Verified review Amazon
Fabian Sep 30, 2021
Full star icon Full star icon Full star icon Full star icon Full star icon 5
I totally recommend this book, it's easy to follow, practical and deeply focused on results.
Amazon Verified review Amazon
Gabriel Z. Oct 13, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
I have finally read through this book and all I can say is, it proved to have been an excellent choice to buy it. As someone who has always been interested in developing video games and already gone trough several books I was searching for something more advanced. Not only has this book provided me with those advanced tools to use in Unity, but I also read through the beginning chapters just to refresh my memory and it was extremely beginners friendly. I love how it gradually went from putting objects in the scene to eventually program AI behavior. I truly recommend buying this book, no matter if you just started to game dev or have advanced.
Amazon Verified review Amazon
Sahand Jul 09, 2024
Full star icon Full star icon Full star icon Full star icon Full star icon 5
This book takes you from start to finish making a very basic FPS Game. It is a very practical book in nature so it can be a bit overwhelming when you are an absolut beginner with no coding experience what so ever. That being said the autor tries to convey the concepts in a understandable and lean way and cut away all the fat that most books carry. i really liked it and worked all the way through without any problems.
Amazon Verified review Amazon
Guillermo Nov 26, 2021
Full star icon Full star icon Full star icon Full star icon Full star icon 5
The book is very detailed building a good base of concepts accompanied by a good illustration and screenshots that if we add the step-by-step explanation makes it accessible and clear for both beginners and more experienced users.I also want to highlight the tour of the latest featured Unity tools, from Visual Scripting, Probuilder among others.Clearly this book is a high recommendation for all those who want to have an excellent base in video game development.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is included in a Packt subscription? Chevron down icon Chevron up icon

A subscription provides you with full access to view all Packt and licnesed content online, this includes exclusive access to Early Access titles. Depending on the tier chosen you can also earn credits and discounts to use for owning content

How can I cancel my subscription? Chevron down icon Chevron up icon

To cancel your subscription with us simply go to the account page - found in the top right of the page or at https://subscription.packtpub.com/my-account/subscription - From here you will see the ‘cancel subscription’ button in the grey box with your subscription information in.

What are credits? Chevron down icon Chevron up icon

Credits can be earned from reading 40 section of any title within the payment cycle - a month starting from the day of subscription payment. You also earn a Credit every month if you subscribe to our annual or 18 month plans. Credits can be used to buy books DRM free, the same way that you would pay for a book. Your credits can be found in the subscription homepage - subscription.packtpub.com - clicking on ‘the my’ library dropdown and selecting ‘credits’.

What happens if an Early Access Course is cancelled? Chevron down icon Chevron up icon

Projects are rarely cancelled, but sometimes it's unavoidable. If an Early Access course is cancelled or excessively delayed, you can exchange your purchase for another course. For further details, please contact us here.

Where can I send feedback about an Early Access title? Chevron down icon Chevron up icon

If you have any feedback about the product you're reading, or Early Access in general, then please fill out a contact form here and we'll make sure the feedback gets to the right team. 

Can I download the code files for Early Access titles? Chevron down icon Chevron up icon

We try to ensure that all books in Early Access have code available to use, download, and fork on GitHub. This helps us be more agile in the development of the book, and helps keep the often changing code base of new versions and new technologies as up to date as possible. Unfortunately, however, there will be rare cases when it is not possible for us to have downloadable code samples available until publication.

When we publish the book, the code files will also be available to download from the Packt website.

How accurate is the publication date? Chevron down icon Chevron up icon

The publication date is as accurate as we can be at any point in the project. Unfortunately, delays can happen. Often those delays are out of our control, such as changes to the technology code base or delays in the tech release. We do our best to give you an accurate estimate of the publication date at any given time, and as more chapters are delivered, the more accurate the delivery date will become.

How will I know when new chapters are ready? Chevron down icon Chevron up icon

We'll let you know every time there has been an update to a course that you've bought in Early Access. You'll get an email to let you know there has been a new chapter, or a change to a previous chapter. The new chapters are automatically added to your account, so you can also check back there any time you're ready and download or read them online.

I am a Packt subscriber, do I get Early Access? Chevron down icon Chevron up icon

Yes, all Early Access content is fully available through your subscription. You will need to have a paid for or active trial subscription in order to access all titles.

How is Early Access delivered? Chevron down icon Chevron up icon

Early Access is currently only available as a PDF or through our online reader. As we make changes or add new chapters, the files in your Packt account will be updated so you can download them again or view them online immediately.

How do I buy Early Access content? Chevron down icon Chevron up icon

Early Access is a way of us getting our content to you quicker, but the method of buying the Early Access course is still the same. Just find the course you want to buy, go through the check-out steps, and you’ll get a confirmation email from us with information and a link to the relevant Early Access courses.

What is Early Access? Chevron down icon Chevron up icon

Keeping up to date with the latest technology is difficult; new versions, new frameworks, new techniques. This feature gives you a head-start to our content, as it's being created. With Early Access you'll receive each chapter as it's written, and get regular updates throughout the product's development, as well as the final course as soon as it's ready.We created Early Access as a means of giving you the information you need, as soon as it's available. As we go through the process of developing a course, 99% of it can be ready but we can't publish until that last 1% falls in to place. Early Access helps to unlock the potential of our content early, to help you start your learning when you need it most. You not only get access to every chapter as it's delivered, edited, and updated, but you'll also get the finalized, DRM-free product to download in any format you want when it's published. As a member of Packt, you'll also be eligible for our exclusive offers, including a free course every day, and discounts on new and popular titles.