In the previous chapter, Chapter 4, Gaming with Monte Carlo Methods, we learned about the interesting Monte Carlo method, which is used for solving the Markov Decision Process (MDP) when the model dynamics of the environment are not known in advance, unlike dynamic programming. We looked at the Monte Carlo prediction method, which is used for predicting value functions and control methods for further optimizing value functions. But there are some pitfalls with the Monte Carlo method. It is applied only for episodic tasks. If an episode is very long, then we have to wait a long time for computing value functions. So, we will use another interesting algorithm called temporal-difference (TD) learning, which is a model-free learning algorithm: it doesn't require the model dynamics to be known in advance and it can be applied for non-episodic tasks...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine