Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Natural Language Processing with PyTorch 1.x

You're reading from   Hands-On Natural Language Processing with PyTorch 1.x Build smart, AI-driven linguistic applications using deep learning and NLP techniques

Arrow left icon
Product type Paperback
Published in Jul 2020
Publisher Packt
ISBN-13 9781789802740
Length 276 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Thomas Dop Thomas Dop
Author Profile Icon Thomas Dop
Thomas Dop
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Section 1: Essentials of PyTorch 1.x for NLP
2. Chapter 1: Fundamentals of Machine Learning and Deep Learning FREE CHAPTER 3. Chapter 2: Getting Started with PyTorch 1.x for NLP 4. Section 2: Fundamentals of Natural Language Processing
5. Chapter 3: NLP and Text Embeddings 6. Chapter 4: Text Preprocessing, Stemming, and Lemmatization 7. Section 3: Real-World NLP Applications Using PyTorch 1.x
8. Chapter 5: Recurrent Neural Networks and Sentiment Analysis 9. Chapter 6: Convolutional Neural Networks for Text Classification 10. Chapter 7: Text Translation Using Sequence-to-Sequence Neural Networks 11. Chapter 8: Building a Chatbot Using Attention-Based Neural Networks 12. Chapter 9: The Road Ahead 13. Other Books You May Enjoy

Exploring CNNs

The basis for CNNs comes from the field of computer vision but can conceptually be extended to work on NLP as well. The way the human brain processes and understands images is not on a pixel-by-pixel basis, but as a holistic map of an image and how each part of the image relates to the other parts.

A good analogy of CNNs would be how the human mind processes a picture versus how it processes a sentence. Consider the sentence, This is a sentence about a cat. When you read that sentence you read the first word, followed by the second word and so forth. Now, consider a picture of a cat. It would be foolish to assimilate the information within the picture by looking at the first pixel, followed by the second pixel. Instead, when we look at something, we perceive the whole image at once, rather than as a sequence.

For example, if we take a black and white representation of an image (in this case, the digit 1), we can see that we can transform this into a vector...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime