Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Hands-On Data Analysis with Scala

You're reading from   Hands-On Data Analysis with Scala Perform data collection, processing, manipulation, and visualization with Scala

Arrow left icon
Product type Paperback
Published in May 2019
Publisher Packt
ISBN-13 9781789346114
Length 298 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Rajesh Gupta Rajesh Gupta
Author Profile Icon Rajesh Gupta
Rajesh Gupta
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Section 1: Scala and Data Analysis Life Cycle FREE CHAPTER
2. Scala Overview 3. Data Analysis Life Cycle 4. Data Ingestion 5. Data Exploration and Visualization 6. Applying Statistics and Hypothesis Testing 7. Section 2: Advanced Data Analysis and Machine Learning
8. Introduction to Spark for Distributed Data Analysis 9. Traditional Machine Learning for Data Analysis 10. Section 3: Real-Time Data Analysis and Scalability
11. Near Real-Time Data Analysis Using Streaming 12. Working with Data at Scale 13. Another Book You May Enjoy

Finding a relationship between data elements

Once we have a decent understanding of the data and some of its main properties, the next step is to find a concrete relationship between data elements. We can use some of the well-established statistical techniques to understand the distribution of data.

Let's continue with our Spark example from the previous section by comparing Total Population to Total Households. We can expect the two numbers to be strongly correlated:

println("Covariance: " + df.stat.cov("Total Population", "Total Households"))
println("Correlation: " + df.stat.corr("Total Population", "Total Households"))

The output from this would be something like this:

Covariance: 1.2338126298368526E8
Correlation: 0.9090567549637986

As expected, we see the correlation coefficient value closer to 1, indicating a...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime