Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Generative Adversarial Networks Cookbook

You're reading from   Generative Adversarial Networks Cookbook Over 100 recipes to build generative models using Python, TensorFlow, and Keras

Arrow left icon
Product type Paperback
Published in Dec 2018
Publisher Packt
ISBN-13 9781789139907
Length 268 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Josh Kalin Josh Kalin
Author Profile Icon Josh Kalin
Josh Kalin
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. What Is a Generative Adversarial Network? 2. Data First, Easy Environment, and Data Prep FREE CHAPTER 3. My First GAN in Under 100 Lines 4. Dreaming of New Outdoor Structures Using DCGAN 5. Pix2Pix Image-to-Image Translation 6. Style Transfering Your Image Using CycleGAN 7. Using Simulated Images To Create Photo-Realistic Eyeballs with SimGAN 8. From Image to 3D Models Using GANs 9. Other Books You May Enjoy

Parsing the CycleGAN dataset


You'll get tired of hearing how important data is to us—but honestly, it can make or break your development. In our case, we are going to simply use the same datasets that the original CycleGAN authors used in their development. This has two use cases: we can compare our results to theirs and we can take advantage of their small curated datasets.

Getting ready

So far, we've focused on just reviewing the structure of how we will solve the problem. As with every one of these chapters, we need to spend a few minutes collecting training data for our experiments. Replicate the directory structure with files, as seen as follows:

├── data
│   ├── 
├── docker
│   ├── build.sh
│   ├── clean.sh
│   └── Dockerfile
├── README.md
├── run.sh
├── scripts
│   └── create_data.sh
├── src
│   ├── 

We'll go and introduce the files you'll need to build so you can have a development environment and data to work with on CycleGAN.

How to do it...

This should start to become a habit by now...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image