Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Generative Adversarial Networks Cookbook

You're reading from   Generative Adversarial Networks Cookbook Over 100 recipes to build generative models using Python, TensorFlow, and Keras

Arrow left icon
Product type Paperback
Published in Dec 2018
Publisher Packt
ISBN-13 9781789139907
Length 268 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Josh Kalin Josh Kalin
Author Profile Icon Josh Kalin
Josh Kalin
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. What Is a Generative Adversarial Network? 2. Data First, Easy Environment, and Data Prep FREE CHAPTER 3. My First GAN in Under 100 Lines 4. Dreaming of New Outdoor Structures Using DCGAN 5. Pix2Pix Image-to-Image Translation 6. Style Transfering Your Image Using CycleGAN 7. Using Simulated Images To Create Photo-Realistic Eyeballs with SimGAN 8. From Image to 3D Models Using GANs 9. Other Books You May Enjoy

Code implementation – discriminator


The discriminator's purpose is to determine whether the generated sample is real or fake—there's a balance to strike in order to make sure the discriminator is just good enough to keep the generator moving in the right direction. The discriminator class we'll use is 3D convolutions to determine whether 3D samples are real or fake.

Getting ready

The generator is now complete and we're moving on to develop the discriminator class. In the src folder, add the discriminator.py file.

 

 

You should have the following directory structure:

├── data
├── docker
│   ├── build.sh
│   ├── clean.sh
│   ├── Dockerfile
│   └── kaggle.json
├── out
├── README.md
├── run_autoencoder.sh
└── src
    ├── discriminator.py
    ├── encoder_model.h5
    ├── encoder.py
    ├── generator.py
    ├── x_test_encoded.npy
    └── x_train_encoded.npy

How to do it...

The Discriminator class needs an initialization step, a block method, a model method, and a summary method. The following recipe...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime