Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Functional Python Programming

You're reading from   Functional Python Programming Create succinct and expressive implementations with functional programming in Python

Arrow left icon
Product type Paperback
Published in Jan 2015
Publisher
ISBN-13 9781784396992
Length 360 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Steven F. Lott Steven F. Lott
Author Profile Icon Steven F. Lott
Steven F. Lott
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Introducing Functional Programming FREE CHAPTER 2. Introducing Some Functional Features 3. Functions, Iterators, and Generators 4. Working with Collections 5. Higher-order Functions 6. Recursions and Reductions 7. Additional Tuple Techniques 8. The Itertools Module 9. More Itertools Techniques 10. The Functools Module 11. Decorator Design Techniques 12. The Multiprocessing and Threading Modules 13. Conditional Expressions and the Operator Module 14. The PyMonad Library 15. A Functional Approach to Web Services 16. Optimizations and Improvements Index

An overview of function varieties

We need to distinguish between two broad species of functions, as follows:

  • Scalar functions apply to individual values and compute an individual result. Functions such as abs(), pow(), and the entire math module are examples of scalar functions.
  • Collection() functions work with iterable collections.

We can further subdivide the collection functions into three subspecies:

  • Reduction: This uses a function that is used to fold values in the collection together, resulting in a single final value. We can call this an aggregate function, as it produces a single aggregate value for an input collection.
  • Mapping: This applies a function to all items of a collection; the result is a collection of the same size.
  • Filter: This applies a function to all items of a collection that rejects some items and passes others. The result is a subset of the input. A filter might do nothing, which means that the output matches the input; this is an improper subset, but it still fits the...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image