Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Exploratory Data Analysis with Python Cookbook
Exploratory Data Analysis with Python Cookbook

Exploratory Data Analysis with Python Cookbook: Over 50 recipes to analyze, visualize, and extract insights from structured and unstructured data

eBook
€26.98 €29.99
Paperback
€37.99
Subscription
Free Trial
Renews at €18.99p/m

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Table of content icon View table of contents Preview book icon Preview Book

Exploratory Data Analysis with Python Cookbook

Preparing Data for EDA

Before exploring and analyzing tabular data, we sometimes will be required to prepare the data for analysis. This preparation can come in the form of data transformation, aggregation, or cleanup. In Python, the pandas library helps us to achieve this through several modules. The preparation steps for tabular data are never a one-size-fits-all approach. They are typically determined by the structure of our data, that is, the rows, columns, data types, and data values.

In this chapter, we will focus on common data preparation techniques required to prepare our data for EDA:

  • Grouping data
  • Appending data
  • Concatenating data
  • Merging data
  • Sorting data
  • Categorizing data
  • Removing duplicate data
  • Dropping data rows and columns
  • Replacing data
  • Changing a data format
  • Dealing with missing values
Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Gain practical experience in conducting EDA on a single variable of interest in Python
  • Learn the different techniques for analyzing and exploring tabular, time series, and textual data in Python
  • Get well versed in data visualization using leading Python libraries like Matplotlib and seaborn

Description

In today's data-centric world, the ability to extract meaningful insights from vast amounts of data has become a valuable skill across industries. Exploratory Data Analysis (EDA) lies at the heart of this process, enabling us to comprehend, visualize, and derive valuable insights from various forms of data. This book is a comprehensive guide to Exploratory Data Analysis using the Python programming language. It provides practical steps needed to effectively explore, analyze, and visualize structured and unstructured data. It offers hands-on guidance and code for concepts such as generating summary statistics, analyzing single and multiple variables, visualizing data, analyzing text data, handling outliers, handling missing values and automating the EDA process. It is suited for data scientists, data analysts, researchers or curious learners looking to gain essential knowledge and practical steps for analyzing vast amounts of data to uncover insights. Python is an open-source general purpose programming language which is used widely for data science and data analysis given its simplicity and versatility. It offers several libraries which can be used to clean, analyze, and visualize data. In this book, we will explore popular Python libraries such as Pandas, Matplotlib, and Seaborn and provide workable code for analyzing data in Python using these libraries. By the end of this book, you will have gained comprehensive knowledge about EDA and mastered the powerful set of EDA techniques and tools required for analyzing both structured and unstructured data to derive valuable insights.

Who is this book for?

Whether you are a data analyst, data scientist, researcher or a curious learner looking to analyze structured and unstructured data, this book will appeal to you. It aims to empower you with essential knowledge and practical skills for analyzing and visualizing data to uncover insights. It covers several EDA concepts and provides hands-on instructions on how these can be applied using various Python libraries. Familiarity with basic statistical concepts and foundational knowledge of python programming will help you understand the content better and maximize your learning experience.

What you will learn

  • Perform EDA with leading python data visualization libraries
  • Execute univariate, bivariate and multivariate analysis on tabular data
  • Uncover patterns and relationships within time series data
  • Identify hidden patterns within textual data
  • Learn different techniques to prepare data for analysis
  • Overcome challenge of outliers and missing values during data analysis
  • Leverage automated EDA for fast and efficient analysis

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Jun 30, 2023
Length: 382 pages
Edition : 1st
Language : English
ISBN-13 : 9781803246130
Category :
Languages :
Concepts :

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Product Details

Publication date : Jun 30, 2023
Length: 382 pages
Edition : 1st
Language : English
ISBN-13 : 9781803246130
Category :
Languages :
Concepts :

Packt Subscriptions

See our plans and pricing
Modal Close icon
€18.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
€189.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts
€264.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total 113.97
Building Statistical Models in Python
€37.99
Machine Learning Engineering  with Python
€37.99
Exploratory Data Analysis with Python Cookbook
€37.99
Total 113.97 Stars icon

Table of Contents

12 Chapters
Chapter 1: Generating Summary Statistics Chevron down icon Chevron up icon
Chapter 2: Preparing Data for EDA Chevron down icon Chevron up icon
Chapter 3: Visualizing Data in Python Chevron down icon Chevron up icon
Chapter 4: Performing Univariate Analysis in Python Chevron down icon Chevron up icon
Chapter 5: Performing Bivariate Analysis in Python Chevron down icon Chevron up icon
Chapter 6: Performing Multivariate Analysis in Python Chevron down icon Chevron up icon
Chapter 7: Analyzing Time Series Data in Python Chevron down icon Chevron up icon
Chapter 8: Analysing Text Data in Python Chevron down icon Chevron up icon
Chapter 9: Dealing with Outliers and Missing Values Chevron down icon Chevron up icon
Chapter 10: Performing Automated Exploratory Data Analysis in Python Chevron down icon Chevron up icon
Index Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon

Customer reviews

Rating distribution
Full star icon Full star icon Full star icon Full star icon Half star icon 4.8
(5 Ratings)
5 star 80%
4 star 20%
3 star 0%
2 star 0%
1 star 0%
Ram Seshadri Sep 05, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
EDA is a very difficult step in machine learning process. Many newbies find this the most challenging part of their ML journey. This book makes that somewhat easy by providing step by step instructions on how to perform various steps in EDA by taking different kinds of data and performing EDA on them. Here are the highlights that I found useful:1. Performing univariate analysis is the first step when performing EDA. This book provides 6 charts to use to analyze data in this section.2. In bivariate and multivariate analysis there are over 15 methods discussed.3. Next there are sections on analyzing time series data and how to analyze Text variables for NLP use cases. These are not usually discussed in many EDA books.4. Finally the book handles missing values and outliers along with an overview of auto EDA tools.In summary I found the book comprehensive and a quick way to improve your EDA skills. There are over 50 recipes discussed and I think you will find many of them useful. All in all I highly recommend this book.
Amazon Verified review Amazon
Om S Aug 11, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Navigating through the pages of the "Exploratory Data Analysis with Python Cookbook" feels like following a guiding beacon into the realm of unraveling hidden insights within data. This resourceful book introduces Python's capabilities in single-variable EDA, providing techniques to analyze tabular, time series, and textual data with tools like Matplotlib and Seaborn. From crafting visual narratives to adeptly handling outliers and missing values, it serves as a comprehensive companion for data analysts, scientists, and curious learners alike. Its pragmatic approach makes it an invaluable asset for those new to the field as well as seasoned practitioners.
Amazon Verified review Amazon
Dr. Chu Meh Chu Oct 13, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
I have been looking for an introductory book on exploratory data analysis for a while. This book, more than answered and satisfied my curiosity. It is a truly a cookbook and will give the reader clear solutions to their data driven problems. I found the organization of the book very easy to follow which correspondingly boosted my confidence in my ability to work on EDA (Exploratory data analysis). I highly recommend this book for its level of detail, readability, and understanding.
Amazon Verified review Amazon
Mojeed Abisiga Jul 20, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
This book excels in every category, ranking in the top 2 to 3% of all the data analytics books I've ever read or come across. And yes my favorite part of the book was where he used pyLDAvis module to plot topics and top words of a reviews data, it reminded me of an interesting project I worked on that I used those same set of visualizations.
Amazon Verified review Amazon
Taylor B. Oct 30, 2023
Full star icon Full star icon Full star icon Full star icon Empty star icon 4
I’m starting to learn python and have taken a couple machine learning classes. I bought this book to brush up on my knowledge a bit more. It is easy to follow, and you can easily recreate a lot of the recipes in this book. The lessons build on one another, so that you learn how to do combinations of things. I wish there were some more advanced examples or assignments. Like, this is how to do joining. Now here’s another more extreme version of it, or something like that. I feel that the single examples don’t provide a strong knowledge of the concepts. But if you are just learning these for the first time, it’s a great book.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

How do I buy and download an eBook? Chevron down icon Chevron up icon

Where there is an eBook version of a title available, you can buy it from the book details for that title. Add either the standalone eBook or the eBook and print book bundle to your shopping cart. Your eBook will show in your cart as a product on its own. After completing checkout and payment in the normal way, you will receive your receipt on the screen containing a link to a personalised PDF download file. This link will remain active for 30 days. You can download backup copies of the file by logging in to your account at any time.

If you already have Adobe reader installed, then clicking on the link will download and open the PDF file directly. If you don't, then save the PDF file on your machine and download the Reader to view it.

Please Note: Packt eBooks are non-returnable and non-refundable.

Packt eBook and Licensing When you buy an eBook from Packt Publishing, completing your purchase means you accept the terms of our licence agreement. Please read the full text of the agreement. In it we have tried to balance the need for the ebook to be usable for you the reader with our needs to protect the rights of us as Publishers and of our authors. In summary, the agreement says:

  • You may make copies of your eBook for your own use onto any machine
  • You may not pass copies of the eBook on to anyone else
How can I make a purchase on your website? Chevron down icon Chevron up icon

If you want to purchase a video course, eBook or Bundle (Print+eBook) please follow below steps:

  1. Register on our website using your email address and the password.
  2. Search for the title by name or ISBN using the search option.
  3. Select the title you want to purchase.
  4. Choose the format you wish to purchase the title in; if you order the Print Book, you get a free eBook copy of the same title. 
  5. Proceed with the checkout process (payment to be made using Credit Card, Debit Cart, or PayPal)
Where can I access support around an eBook? Chevron down icon Chevron up icon
  • If you experience a problem with using or installing Adobe Reader, the contact Adobe directly.
  • To view the errata for the book, see www.packtpub.com/support and view the pages for the title you have.
  • To view your account details or to download a new copy of the book go to www.packtpub.com/account
  • To contact us directly if a problem is not resolved, use www.packtpub.com/contact-us
What eBook formats do Packt support? Chevron down icon Chevron up icon

Our eBooks are currently available in a variety of formats such as PDF and ePubs. In the future, this may well change with trends and development in technology, but please note that our PDFs are not Adobe eBook Reader format, which has greater restrictions on security.

You will need to use Adobe Reader v9 or later in order to read Packt's PDF eBooks.

What are the benefits of eBooks? Chevron down icon Chevron up icon
  • You can get the information you need immediately
  • You can easily take them with you on a laptop
  • You can download them an unlimited number of times
  • You can print them out
  • They are copy-paste enabled
  • They are searchable
  • There is no password protection
  • They are lower price than print
  • They save resources and space
What is an eBook? Chevron down icon Chevron up icon

Packt eBooks are a complete electronic version of the print edition, available in PDF and ePub formats. Every piece of content down to the page numbering is the same. Because we save the costs of printing and shipping the book to you, we are able to offer eBooks at a lower cost than print editions.

When you have purchased an eBook, simply login to your account and click on the link in Your Download Area. We recommend you saving the file to your hard drive before opening it.

For optimal viewing of our eBooks, we recommend you download and install the free Adobe Reader version 9.