Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Deep Learning with TensorFlow

You're reading from   Deep Learning with TensorFlow Explore neural networks and build intelligent systems with Python

Arrow left icon
Product type Paperback
Published in Mar 2018
Publisher Packt
ISBN-13 9781788831109
Length 484 pages
Edition 2nd Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Giancarlo Zaccone Giancarlo Zaccone
Author Profile Icon Giancarlo Zaccone
Giancarlo Zaccone
Md. Rezaul Karim Md. Rezaul Karim
Author Profile Icon Md. Rezaul Karim
Md. Rezaul Karim
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Getting Started with Deep Learning FREE CHAPTER 2. A First Look at TensorFlow 3. Feed-Forward Neural Networks with TensorFlow 4. Convolutional Neural Networks 5. Optimizing TensorFlow Autoencoders 6. Recurrent Neural Networks 7. Heterogeneous and Distributed Computing 8. Advanced TensorFlow Programming 9. Recommendation Systems Using Factorization Machines 10. Reinforcement Learning Other Books You May Enjoy Index

Chapter 6. Recurrent Neural Networks

A RNN is a class of ANN where connections between units form a directed cycle. RNNs make use of information from the past. That way, they can make predictions in data with high temporal dependencies. This creates an internal state of the network, which allows it to exhibit dynamic temporal behavior. In this chapter, we will develop several real-life predictive models, using RNNs and their architectural variants, to make predictive analytics easier.

First, we will provide some theoretical background of RNNs. Then we will look at a few examples that will show a systematic way of implementing predictive models for image classification, sentiment analysis of movies, and spam predictions for Natural Language Processing (NLP).

Then we will show how to develop predictive models for time series data. Finally, we will see a how to develop a LSTM network for solving more advanced problems, such as human activity recognition.

Concisely, the following topics...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime