- Sutskever, I., & Hinton, G. E. (2008). Deep, narrow sigmoid belief networks are universal approximators. Neural computation, 20(11), 2629-2636.
- Sainath, T. N., Kingsbury, B., & Ramabhadran, B. (2012, March). Auto-encoder bottleneck features using deep belief networks. In 2012 IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 4153-4156). IEEE.
- Wu, K., & Magdon-Ismail, M. (2016). Node-by-node greedy deep learning for interpretable features. arXiv preprint arXiv:1602.06183.
- Ioffe, S., & Szegedy, C. (2015, June). Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In International Conference on Machine Learning (ICML) (pp. 448-456).
- Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research, 15(1), 1929-1958.
- Duchi, J., Hazan, E., & Singer, Y...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand